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Abstract— Dexterous manipulation has broad applications in
assembly lines, warehouses and agriculture. To perform broad-
scale, complicated manipulation tasks, it is desired that a multi-
fingered robotic hand can robustly manipulate objects without
knowing the full dynamics of objects (i.e. mass, moment of
inertia) in advance. However, realizing robust manipulation
is challenging due to the complex contact dynamics, the
nonlinearities of the system, and the potential sliding during
manipulation. In this paper, a dual-stage grasp controller is
proposed to handle these challenges. In the first stage, feedback
linearization is utilized to linearize the nonlinear uncertain
system. Considering the structures of uncertainties, a robust
controller is designed for such a linearized system to obtain
the desired Cartesian force on the object. In the second stage,
a manipulation controller using force optimization and torque
control regulates the contact force and torque based on the
Cartesian force from the first stage. The dual-stage grasp
controller is able to realize robust manipulation without contact
modeling, prevent the slippage, and withstand at least 40% mass
uncertainty and 50% moment of inertia uncertainty. Moreover,
it does not require velocity information of the object. Simulation
results on Mujoco verify the efficacy of the proposed dual-stage
grasp controller. The simulation video is available at [1].

I. INTRODUCTION
Dexterous manipulation is essential for manipulators to

execute complicated tasks, such as circuit assembly, com-
modity organizing and fruit harvesting. To perform broad-
scale manipulations, a robotic hand usually has to manipulate
objects with various shapes and dynamics properties such as
mass and moment of inertia (MoI). In many applications (e.g.
fruit harvesting), the accurate models of the object dynamics
are usually unknown in advance. They are estimated by 3D
sensing, as well as prior knowledge such as density and
statistical model. Consequently, uncertainties are introduced
into the system. It is difficult to deal with such uncertainties
in dexterous manipulation. First, the object is not directly
controlled by actuators. Alternatively, energy is transferred
from the fingertips to the object through contacts, which
are complex to model because of various surface properties.
Second, the robotic hand for dexterous manipulation can be
a high degree-of-freedom (DOF) nonlinear system and can
not be directly written into linear time-invariant (LTI) or
linear parametric-varying (LPV) form, which is challenging
for robust control. Moreover, the potential sliding between
the fingertips and the object would degrade the object motion
tracking performance.
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As a result, robust dexterous manipulation for nonlinear
systems has received significant attention. A robust controller
using linear matrix inequality for contact uncertainties was
proposed in [2]. The controller is designed for a LTI system
linearized around an equilibrium point based on full state
feedback. A robust force-position controller using 6D tactile
sensors was implemented to realize adaptive grasping [3].
Nonlinearities were ignored in [3] due to its constant-pose
grasping property. µ-synthesis with descriptor form was used
to control magnetic bearing systems [4], active magnetic lev-
itation systems [5], and satellite attitude control systems [6].
These applications work on linearized systems without sta-
bility guarantee under the influence of nonlinearities. In order
to consider parameter variations caused by nonlinearities, a
LPV control with smooth scheduling was applied in [7], with
an assumption that the nonlinearities can be approximated
through linear varying parameters.

To deal with dynamics uncertainties, a disturbance ob-
server (DOB) was proposed in [8] for tracking control. The
nonlinearities and parameter uncertainties are lumped into a
disturbance term, which loses structures of both the nominal
models and the uncertainties. Moreover, it assumes full state
feedback, while in dexterous hand, the velocity feedback is
difficult due to the size constraints, backlash error and cost
issue. Feedback linearization was applied to control an un-
manned aerial vehicle [9]. A linear state observer and a DOB
are combined to observe the state and lumped disturbance.
Similar to [8], the structures of the parameter uncertainties
are ignored, and the linear state observer assumes a perfect
model information for state estimation.

This paper proposes a dual-stage grasp controller which
consists of a robust controller and a manipulation controller.
The proposed dual-stage grasp controller achieves dexterous
manipulation under object dynamics uncertainties and exter-
nal disturbances. Distinctive features of this paper include:
1) The nonlinearities are reduced by feedback linearization
on a nominal model. Compared with LPV that assumes
linear parameter variations, the proposed method is more
computationally efficient for broad-scale manipulations. 2)
The robust controller is formulated as a µ-synthesis problem,
and the structures of the uncertainties are considered by
descriptor form, instead of treating uncertainties as lumped
disturbance, which results in information loss and a larger
disturbance to resist. 3) By the dual-stage formulation, the
complicated contact modeling is bypassed, and the contact
force is regulated and the slippage is prevented. At each
time step, an Cartesian space force is computed to drive the
object based on the designed robust controller. The proposed
manipulation controller consists of a contact force optimizer



and a joint-level torque controller, which provides reasonable
contact force on fingertips and prevent slippage between the
fingertips and the object. 4) Moreover, the dual-stage grasp
controller does not require expensive 3D/6D tactile sensors
nor velocity measurements of objects/joints.

The remaining of this paper is organized as follows.
Section II introduces the overall dual-stage grasp controller
framework. Section III describes the system dynamics and
the combination of the feedback linearization and the mod-
eling. The µ-synthesis based robust controller, and the ma-
nipulation controller that consists of a force optimizer and a
torque controller, are presented in Section IV and Section V,
respectively. Section VI shows the simulation results on a
robotic hand manipulating an object with 40% mass and 50%
MoI uncertainties. Section VII concludes the paper.

II. DUAL-STAGE PLANNER FRAMEWORK

Figure 1 shows the proposed framework of the dual-
stage grasp controller. In this figure, r, y, n and e denote
the reference pose, the actual pose, the measurement noise
and the pose error of the object, respectively. The signal u
denotes the control input to the linearized plant. The signal
udis is the external disturbance to the plant. F is the desired
Cartesian space force on the object. The signal τ is the torque
command to the hand in order to realize F .

The design goal of this grasp controller is to:
1) track the desired pose r of the object,
2) be robust to object dynamics uncertainties (i.e. mass

and MoI uncertainties) and external disturbances udis,
3) realize firm contact without violating the friction cone

constraints.
The dual-stage grasp controller consists of a robust controller
and a manipulation controller, as shown in Fig. 1. The robust
controller takes e as input, and generate F of the object.
The robust controller is applied on a linearized nominal
plant with nonlinear uncertainties. The linearized nominal
plant is obtained by feedback linearization on an augmented
nonlinear plant. The desired Cartesian force F obtained
from feedback linearization and robust controller is converted
into torque command τ to the hand by the manipulation
controller.

In robust controller design, the feedback linearization is
directly connected to the augmented nonlinear plant by the
assumption that the actual force on the object after executing
τ is close to F . The gap between these two forces can be
treated as part of udis.

The following sections focus on the modeling of the
uncertain dynamical systems, robust controller design, and
the manipulation controller, respectively.

III. MODELING OF UNCERTAIN DYNAMICAL
SYSTEMS

A. State-Space Dynamics

The hand and object dynamics are described by:

Mh(q)q̈ + Ch(q, q̇)q̇ +Nh(q, q̇) + JTh (q, xo)fc = τ

Mo(xo)ẍo + Co(xo, ẋo)ẋo +No = G(q, xo)fc
(1)
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Fig. 1. The general framework of the proposed dual-stage grasp controller.

where Mh/o, Ch/o and Nh/o are inertia matrices, Coriolis
matrices and gravities for the hand/object. q, q̇ and q̈ ∈
Rnq are joint angle, velocity and acceleration, with nq as
the total DOFs of the hand. xo, ẋo and ẍo ∈ Rnx are
a local parameterization of object position, velocity and
acceleration, where nx is the dimension of the pose of the
object, with nx = 6 for 3D manipulation, and nx = 3 for
2D manipulation. fc ∈ Rdcnc and τ ∈ Rnq are contact force
vector and joint torque vector, where dc is the dimension of
each contact, and nc is the contact number. Jh ∈ R(dcnc)×nq

is the hand Jacobian and G ∈ Rnx×(dcnc) is the grasp map,
see [10] for more details.

If the contacts are fixed w.r.t both object and fingertips,
then

Jh(q, xo)q̇ = GT (q, xo)ẋo (2)

holds. Equation 2 assumes the contact forces remain in the
friction cone.

The object and hand dynamics in (1) can be connected
by (2):

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = GJ−Th τ
(3)

where:

M = Mo +GJ−Th MhJ
−1
h GT

C = Co +GJ−Th ChJ
−1
h GT +GJ−Th Mh

d(J−1
h GT )

dt
N = No +GJ−Th Nh

(4)

In some applications such as fruit harvesting, only the
vision sensors are available for dynamics parameter es-
timation. Hence, only the rough values of the mass mo

and the MoI Io of the object can be estimated. Therefore,
Mo, Co, No cannot be exactly known and would exhibit some
uncertainties. Suppose that the inertia, Coriolis and gravity
can be represented as:

M = M̄ + M̃o, C = C̄ + C̃o, N = N̄ + Ño (5)

with nominal values:

M̄ = M̄o +GJ−Th MhJ
−1
h GT

C̄ = C̄o +GJ−Th ChJ
−1
h GT +GJ−Th Mh

d(J−1
h GT )

dt
N̄ = N̄o +GJ−Th Nh

where M̄o, C̄o, N̄o are nominal object inertia, Coriolis, grav-
ity, and M̃o, C̃o, Ño are corresponding uncertainties. The



torque command τ can be related to the object-centered
force F :

τ = JTh (G†F +NGλ) (6)

where NG is the matrix composed by the basis of the null
space of G, and λ is a free variable to control the magnitude
and direction of the contact force.

The state space equation can be derived by plugging (5)
and (6) into (3):

[
I O
O M̄

]
︸ ︷︷ ︸

M̄aug

+

[
O O
O M̃o

]
︸ ︷︷ ︸

M̃aug


[
ẋo
ẍo

]
︸︷︷︸
ẋ

+


[
O
N̄

]
︸︷︷︸
N̄aug

+

[
O
Ño

]
︸ ︷︷ ︸
Ñaug

+


[
O −I
O C̄

]
︸ ︷︷ ︸

C̄aug

+

[
O O
O C̃o

]
︸ ︷︷ ︸

C̃aug


[
xo
ẋo

]
︸︷︷︸
x

=

[
O
I

]
︸︷︷︸
BF

F

(7)
where I,O ∈ Rnx×nx . Equation (7) can be rewritten as:

ẋ =− M̄−1
aug C̄augx− M̄−1

aug N̄aug + M̄−1
augBFF−

M̄−1
aug M̃augẋ− M̄−1

aug C̃augx− M̄−1
aug Ñaug

(8)

In 3D manipulation, the parameters of (8) can be decom-
posed as:

− M̄−1
aug M̃aug = L1∆R1, −M̄−1

aug C̃aug =

2∑
j=1

L2j∆R2j

(9)
when parameterizing the rotation matrix R of the object by
Z-Y-X Euler angles E, with

L1 = L21 = [06×6; M̄−1]× diag(I3×3, Q
T
E)

∆ = diag(δmI3×3, δI1 , ...δI3) with‖∆‖∞ ≤ 1

R1 = −diag(∆mI3×3,∆I)× [06×6, diag(I3×3, QE)]

R21 = −diag(∆mI3×3,∆I)× [06×6, diag(03×3, Q̇E)]

L22 = [06×6; M̄−1]× diag(I3×3, R(QEĖ)̂ )

R22 = −diag(∆mI3×3,∆I)× [06×6, diag(03×3, QE)]

where ∆m ∈ R and ∆I = diag(∆I1, ...∆I3) are the
maximal mass and MoI uncertainties, QE ∈ R3×3 is a
Jacobian matrix from Euler angle rate Ė to angular velocity
of the object in body frame, and (•)̂ denotes the matrix
representation of cross product.

With (9), the uncertainty term −M−1
aug (M̃augẋ+C̃augx) can

be represented by:

L1∆ (R1ẋ+R21x)︸ ︷︷ ︸
z1

+L22∆R22x︸ ︷︷ ︸
z2

= L1 ∆z1︸︷︷︸
w1

+L22 ∆z2︸︷︷︸
w2

= L1w1 + L22w2

(10)

2D manipulation is used for illustration and comparison
purpose. The Coriolis uncertainty can be eliminated by
choosing the local parameterization as body frame translation

and rotation angle. Thus L21, R21 and L22, R22 are removed,
and

L1 = [03×3; M̄−1]

∆ = diag(δmI2×2, δI3) with‖∆‖∞ ≤ 1

R1 = [03×3,−diag(∆mI2×2,∆I3)]

(11)

In general 3D manipulation, the Coriolis term is typically
ignored due to the low-speed operation condition, as shown
in [11]. The tracking performance neglecting Coriolis term
in 3D manipulation is shown in Fig. 12.

The control input u is F , and the augmented gravity N̄aug
can be compensated by an additional control input u0 =
N̄aug. The gravity uncertainty Ñaug is considered as part of
the disturbance udis. Then the uncertain state space model is
represented as:

ẋ = −M̄−1
aug C̄aug︸ ︷︷ ︸
A

x+ L1︸︷︷︸
B1

w1 + M̄−1
augBF︸ ︷︷ ︸
B2

(u− u0 + udis)

z1 = C1x+R1L1︸ ︷︷ ︸
D11

w1 +R1M̄
−1
augBF︸ ︷︷ ︸
D12

(u− u0 + udis)

y = [I3×3, 03×3]︸ ︷︷ ︸
C2

x w1 = ∆z1

(12)
where C1 = −R1M̄

−1
aug C̄aug. Equation (12) describes un-

certainties by linear fractional transformation (LFT). Notice
though the system is nonlinear, due to the state dependencies
of the dynamics parameters.

B. Combining Feedback Linearization with Modeling

A challenge in robust control is the implementation on
nonlinear systems. Although some extensions have been
done for LPV systems, the application of robust control to a
general nonlinear system is still challenging.

To reduce the influence of nonlinearities, feedback lin-
earization is applied to linearize the model. More specifically,
for (8), the command force may be:

F =
(
M̄−1

augBF
)† [

M̄−1
aug C̄augx+ M̄−1

aug N̄aug +BFu
]

(13)

Notice
(
M̄−1

augBF
) (
M̄−1

augBF
)†

= [03×3, 03×3; 03×3, I3×3],
rather than identity. Therefore, (8) becomes:

ẋ = Ax+BFu− M̄−1
aug M̃augẋ− M̄−1

aug C̃augx− M̄−1
aug Ñaug

A =

[
03×3 I3×3

03×3 03×3

]
(14)

Following the similar procedure as (9) and (11):

ẋ = Ax+ L1w +BF (u+ d)

z = R1Ax+R1L1w +R1BF (u+ d)

y = [I3×3, 03×3]x w = ∆z

(15)

The model would be a LTI system if there were no
uncertainties. However, due to the parametric uncertainties,
the feedback linearization based on nominal parameters will
not be able to eliminate all the nonlinearities. Therefore, the
remaining nonlinear uncertainties after feedback linearization
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Fig. 2. Generalized plant with weighting functions.

Fig. 3. Illustration of the closed-loop system. The closed-loop system is
defined by a lower LFT between Pgeneral and K w.r.t. K. The input and
output of the system are concatenated as d and e, respectively.

is approximated by a LTI system linearized around an equi-
librium point. The resultant system after LTI approximation
has the same form as (15), except that the L1 and R1 are
evaluated at the equilibrium point. The feasibility of this
approximation is validated in Section VI.

The linearized plant described by (15) is controllable and
observable. The robust controller will be designed based on
this linearized plant.

IV. ROBUST CONTROLLER DESIGN

A. Design Scheme

The goal of the robust controller is to obtain desired
Cartesian force of the object for motion tracking with guar-
anteed stability and performance robustness. The generalized
plant Pgeneral that the robust controller will work on is
shown in Fig. 2. GNL and ∆ define an upper LFT w.r.t.
∆ (denoted as Fu(GNL,∆)) to represent the nonlinear
uncertain dynamics, as shown in red dash box. The feedback
linearization described by α(x) + β(x)u is connected with
the nonlinear uncertain plant to linearize the nominal model,
as shown in the blue dash-dot box. Equation (15) is the
combination of two boxes.

The inputs to the generalized plant Pgeneral are
{r, udis, n, u}, which denote the pose reference, the input
disturbance, the noise and the control input to the plant.
The outputs of the plant are {wperf, wu, e}, which denote
the tracking performance, the action magnitude and the
pose error. Wperf is to suppress tracking errors at different
frequencies. Wu is to regulate the control input. Wdis is to
shape the input disturbance. The structures of the weighting
functions will be described in Section IV-B.

The connection between the generalized plant Pgeneral and
the controller K is described by Fig. 3. Pgeneral and K
define a lower LFT w.r.t. K as Fl(Pgeneral,K), to denote the
closed-loop system. The closed-loop system concatenates the
inputs {r, udis, n} as d and the outputs {wperf, wu} as e. The

objective of the robust controller design is to synthesize K
to keep e small for all reasonable d. The small is in the sense
of infinity norm, i.e.

K = argmin
K

‖FL(Pgeneral,K)‖∞

with:
e = FL(Pgeneral,K)d
‖FL‖∞ := max

ω∈R
σ̄(FL(jω))

(16)

The D-K iteration is applied to solve (16):

min
K

inf
D
‖DFL(Pgeneral,K)D−1‖∞ < 1 (17)

Readers can refer [12] for more details.
The designed controller K will be used to calculate u

based on the pose error e. Then the output of the controller
is combined with feedback linearization (13) to obtain the
desired Cartesian space force F for the object.

B. Design of Weighting Functions

The general form of a weighting function W (s) in Pgeneral
can be written as:

W (s) = diag([a1W1,1(s), a2W2,2(s), a3W3,3(s)])

Wi,i(s) =

Ghs+Gl

√
G2

h−1

1−G2
l
ωc

s+

√
G2

h−1

1−G2
l
ωc


n

(18)

where ai is the weight to the i-th channel. Gh is the high-
frequency gain, Gl is the low-frequency gain, ωc is the cross-
over frequency, and n is the order for the weighting function.
In this section, the principle for choosing parameters are
introduced. The concrete values for these parameters will
be shown in Section VI.

1) Design of Performance Weighting Function Wperf:
Wperf penalizes the tracking error caused by the general
disturbance d. High cross-over frequency wc penalizes the
disturbance with large bandwidth. With larger wc, the system
takes shorter time to settle down, and the desired force
tends to change at higher frequencies. Consequently, the
error oscillates at higher frequencies. The low-frequency gain
Gl penalizes the magnitude of low-frequency disturbance.
When Gl is very small, the low-frequency error is large,
but the high-frequency error is small, which means that the
system takes shorter time to converge. On the other hand,
the high-frequency gain Gh penalizes the magnitude of high-
frequency disturbances. Increasing Gh will speed-up the con-
vergence. However, the oscillation will be enlarged, and the
low-frequency performance will be compromised. As for n,
large order n makes the system have more freedom to choose
the best controller, while an excessive large n increases the
order of the controller. The motivation for tuning ai is the
fact that the behavior in translation directions and rotation
direction are usually different because of different parameter
scales.



2) Design of Action Weighting Function Wu: The actions
at different frequencies are penalized equally. This is a
special case when Gl = Gh, which means the weighting
function is a constant. Similar as before, large Gl/h pe-
nalizes the magnitude of action. A larger Gl/h results in
more penalty to control effort, thus the force generated by
controller is smaller. The smaller force can result in slower
convergence speed and poor disturbance rejection. On the
contrary, a small Gl/h can make the controller generate
excessive large force and damage the object. The influences
of ai and n can be reflected into changing Gl/h.

3) Design of Disturbance Weighting Function Wdis: The
disturbance weighting function is used to shape the exoge-
nous disturbance in the generalized plant Pgeneral. The cross-
over frequency ωc indicates the shaping bandwidth. Gener-
ally, it enlarges the magnitude of low-frequency disturbances
and shrink the magnitude of high-frequency disturbances. A
large Gl will create a virtual disturbance with large low-
frequency gain. Therefore, the controller would concentrate
on reducing the low-frequency disturbance. In our implemen-
tation, the gravity is treated as static disturbance. Therefore,
increasing Gl makes the actual system response faster by
using the larger control effort. The high-frequency gain Gh
specifies the shaping factor to high-frequency disturbances.
A large value makes the system consider the disturbance
rejection in full scale, and the low-frequency disturbance re-
sponse will be compromised. Similar with Wperf, ai specifies
the scales of shaping for different channels, and n specifies
the freedom of designing Wdis.

4) Design of Noise Weighting Function Wn: The Wn is
designed to be a high-pass filter to shape the noise to the
generalized plant Pgeneral. The reasons are twofolds. First,
the vision sensor used for object pose detection has high-
frequency noises. Second, the manipulation controller used
for desired force approximation is a low-pass filter, which
may result in additional high-frequency approximation error.
The tuning of noise weighting is similar with disturbance
weighting tuning.

V. MANIPULATION CONTROLLER DESIGN

Given the contacts between the fingertips and the object,
the task of the manipulation controller is to generate torque
commands for the hand to drive the object and achieve
desired force on the object. The desired force is provided
by the robust controller in Section IV. The manipulation
controller consists of a force optimizer, which compute a
desired contact force f on fingertips from the desired force
F on the object, and a joint-level torque controller, which
generates an appropriate joint torque vector τ to reproduce
f .

The force optimization is formulated into a quadratic
programming (QP):

subject to:

min
β

α1‖f‖22 + α2‖f − fprev‖22 + α3‖Ψ‖22 (19a)

s.t. Ψ = F −G(q, xo)f (19b)
f = Bβ (19c)
β ≥ 0 (19d)

τmin ≤ JTh (q, xo)f ≤ τmax (19e)

where f = [fT1 , ..., f
T
nc

]T is a concatenated contact force
vector in contact frame. fprev is the contact force of the
previous time step. B = diag{B1, ..., Bnc

} and Bi is a
conservative pyramid approximation of friction cone [13].
β ≥ 0 is the non-negative linear coefficients of columns of
B. The weights α1, α2, α3 are used to balance different cost
terms.

A slack variable Ψ is introduced to relax the hard con-
straint F = Gf , since F = Gf might result in an
infeasible solution, and the location measurements of contact
points might be noisy. The constraints (19c) and (19d)
together ensure that the contact force remains within positive
colspan(B) (i.e. friction cone). Constraint (19e) guarantees
that the contact force f is realizable.

The joint level torque control takes the optimal contact
force f∗ from the force optimization as input, and yields the
control torque:

τ = JTh (q, xo)f
∗

JTh (q, xo) maps the contact force on fingertips to the joint
torque vector.

VI. SIMULATION RESULTS

Simulation results are provided in this section to verify
the effectiveness of the proposed dual-stage grasp controller.
The simulation video is available at [1].

A. Simulation Setup

The controller is implemented in the Mujoco physics
engine [14]. The simulation time step is set to be 2 ms. Our
platform is a desktop with 4.0 GHz Intel Core Quad CPU,
32GB RAM, running Windows10 operating system.

The hand models used in the simulation are shown in
Fig. 4. The general hand model used in 3D manipulation
is shown in Fig. 4(a). It has four identical fingers and 12
DOFs. Each finger has three revolute joints. For purposes
of illustration, a planar hand with two identical fingers and
4 DOFs is set up, as shown in Fig. 4(a). Two hands are
equipped with joint encoders, motor torque sensors, one-
dimensional distributive tactile sensors. The manipulated
object is approximately 0.5 kg. The dynamics parameters
of the object are assumed to be unknown to the controller.
A vision system can be employed to estimate the dynamics
parameters, and obtain the motion by tracking the features on
it. Currently, the object pose is obtained from the simulator,
and the mass and MoI are assumed to have 40% and 50%
uncertainties in the robust controller design.



(b)(a)

Fig. 4. Two hand models used in the simulation. The hand on the left
side is used for 3D manipulation. It has four identical fingers and 12 DOFs.
Each finger has three revolute joints J1, J2 and J3. The hand on the right
side is developed for 2D manipulation. It has two identical fingers and 4
DOFs. Each finger has two revolute joints J1 and J2. The motion of the
object is constrained in 2D space.

B. Comparison Between Different Methods

For comparison, the proposed robust controller is com-
pared with other methods. One of these methods is DOB
proposed in [8]. Another is modified impedance control
(MIC) based on the previous work of the authors. The two
approaches are briefly reviewed in the following.

1) Disturbance Observer Based Tracking Control: This
method assumes the dynamics of the system as Mẍo+Cẋo+
N + d = F . The dynamics can be rewritten as ẍo = u+w,
where u = F−N̄ and N̄ denotes nominal gravity value, and
w = ẍo− (Mẍo +Cẋo + Ñ + d) is the lumped disturbance.
Similar to feedback linearization, the controller is set as:
u = r̈ − k1ė− k2e− ŵ, where e = xo − r. In this manner,
the error dynamics are:[

ė
ë

]
=

[
03×3 I3×3

−k2 −k1

]
︸ ︷︷ ︸

A

[
e
ė

]
+

[
03×3

I3×3

]
︸ ︷︷ ︸

B

ew

where ew = w − ŵ, ŵ = ŵ0 + KoE, and ˙̂w0 = BTPE. P
can be found by: ATP + PA = −Q, and Ko can be found
by: KoA+KoBKo + BTP = 0, with E = [eT , ėT ]T . The
desired force on the object is F = u+ N̄ .

2) Modified Impedance Control: In impedance control,
the desired motion of the object is transformed into the
desired force on the object [11], [15]. An additional integral
term has been added in our previous work [16] to address
the object mass uncertainty: Fimp = Mdẍo +Bd(ẋo − ṙ) +

Kd(xo−r)+Id
(∫ t

0
(xo − r)dt

)
, where Md, Bd and Kd are

the desired inertia, damping and stiffness, respectively. Id is
a gain matrix for additional integral term. To remove the
requirement of acceleration measurement, we set Md = M ,
as shown in [11]. In this manner, the desired force F can
be obtained by Mẍ+ N̄ = F + Fimp. The unknown inertia
matrix poses certain difficulties in guaranteeing the stability
of the controller.

C. Parameter Lists

1) Parameters for Proposed Dual-Stage Planner: The
parameters of weighting functions are shown in the following
table:

Fig. 5. A simulation on 2D manipulation under object dynamics uncer-
tainties using the proposed dual-stage grasp controller. The task is to realize
the desired object motion within the workspace of the hand. The object is
subject to -20% mass and 50% MoI uncertainties. A robust controller that
can resist ±40% mass and ±50% MoI uncertainties is implemented.

Weightings ωc Gl Gh (a1, a2, a3) n
Wperf 2π 1100 0.9 (1,1,2) 2
Wu N/A 0.0001 0.0001 (1,1,0.5) 1
Wdis 200π 80 0.1 (1,1,10) 2
Wn 20π 0.1 10 (1,1,1) 1
As for the parameters for manipulation controller, the joint

torques are constrained by τmin = −0.5 Nm and τmax = 0.5
Nm. 0.5 Nm is twice the joint torque in static case. The
weights for different cost terms are α1 = 0.1, α2 = 0.1, α3 =
1000. The actual friction coefficient in Mujoco simulation is
set to be 1, while in manipulation controller design, we use
a conservative coefficient 0.5774.

2) Parameters for DOB and MIC: The parameters for
DOB based control are: k2 = 95 × diag([1, 1, 0.01]),
k1 = 95 × diag([1, 1, 0.008]), and Q matrix is chosen as:
Q = diag([51000, 51000, 6, 51000, 51000, 1]). The param-
eters for MIC are: Kd = 50 × diag([1, 1, 0.2]), Bd =
5× diag([1, 1, 0.02]), Id = 50× diag([1, 1, 0.2]).

D. Simulation Results

A general manipulation task is employed to verify the
efficacy of the proposed dual-stage grasp controller. The
desired object motion is to track to (150 mm, -10 mm, 5◦)
from (139 mm, 0 mm, 0◦). The equilibrium point is chosen
at the beginning of the contact. The configuration of both
the hand and the object at the beginning of the contact can
be planned by grasp planning such as [17]. In this paper, the
equilibrium point is prerecorded for simplicity. Therefore, we
can calculate all the nominal parameters that are required for
modeling.

The controller is designed based on 40% mass and 50%
MoI uncertainties. The order of the controller is 29 after
model reduction. The robust stability margin is 1.62, which
means that the system can withstand about 62% more uncer-
tainties than are specified in the uncertain elements without
going unstable.

The simulation results of the proposed method under -20%
mass uncertainty and 50% MoI uncertainty are shown in
Fig. 5 and Fig. 6. Fig. 6(a) shows the position and orientation
errors of the object. The maximum settling time1 of all
channels is within 0.91 seconds. Fig. 6(b) shows the desired

15% threshold is used for all settling time calculations.
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Fig. 6. Illustration of the performance for the dual-stage grasp controller
with robust controller and feedback linearization. The manipulated object is
subject to -20% mass and 50% of MoI uncertainties. The maximum settling
time of all channels is less than 0.91 seconds.
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Fig. 7. Illustration of the performance of the best-tuned robust controller
without feedback linearization. The settling time is 1.6836 seconds.

force on the composite hand-object system. The force in
Y direction (shown in red) can rapidly converge to actual
gravity of the composite system (purple dash line), though
there exists 20% gap between the nominal and the actual
object mass. The desired force is converted into joint torque
command by the manipulation controller. Fig. 6(c) shows the
actual force on the object detected by the force sensor (force
sensor is used for result analysis only).

The tracking performance of the robust controller without
feedback linearization is shown in Fig. 7. The robust con-
troller is well-tuned by following the criteria introduced in
Section IV-B.1. Compared with Fig. 6, the robust controller
without feedback linearization has more severe oscillation
and longer settling time. The oscillation is caused by the
nonlinearities of the system.

In Section III-B, we introduced feedback linearization to
reduce the nonlinearities of the nominal system. However, the
nonlinearities still exist in the uncertain plant, as shown in
(15). Since the model uncertainties in (15) are evaluated at an
equilibrium point, this will introduce additional disturbance.
We call it the disturbance from the LTI approximation, and
denote it as dLTI. dLTI has the form:

dLTI = (I − M̄eqM̄
−1)(M̃oẍo + Ño)− M̄eqM̄

−1C̃oẋo (20)

where M̄eq is the nominal inertia matrix at equilibrium point.
The magnitudes of dLTI in both time and frequency domain
are shown in Fig. 8. Figure 8(a) shows the magnitude of
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Fig. 8. Illustration of the disturbance caused by LTI approximation after
feedback linearization. The disturbance caused by equilibrium approxima-
tion mainly lies in low-frequency region(<12 Hz).

Fig. 9. Illustration of the performance of DOB proposed by [8] in Mujoco.
The manipulated object is subject to -20% mass uncertainty. The settling
time is 3.3321 seconds. The oscillation is caused by a large Q matrix..

the disturbance, and Fig. 8(b) shows the spectrum of the
dLTI. The disturbance caused by equilibrium approximation
mainly lies in low-frequency region(<12 Hz), which can be
suppressed by the proposed robust controller.

In comparison, The simulation results of the DOB and
MIC under the same amount of mass and MoI uncertainties
are shown in Fig. 9 and Fig. 10. The convergence speed of
DOB is slightly faster than MIC. Both of these two methods
make the desired and actual force in y direction converges
to actual gravity. Compared with MIC, the DOB has more
intuitive way to guarantee stability. However, the tuning
process of DOB takes longer time, which poses a potential
challenge to use this method. On one hand, the Q matrix
in Section VI-B.1 influences the disturbance estimation gain,
and increasing Q will speedup the convergence, while a large
Q will result in severe oscillation. On the other hand, the gain
matrices k1 and k2 tuned in absence of disturbance does not
work since they result in a slow disturbance compensation.
The best tuned result is shown in Fig. 9.

The tracking performance for -40% mass uncertainty are
shown in Fig. 11. The settling time for the proposed dual-
stage grasp controller is 1.6804 seconds.

Finally, the 3D manipulation performance using the hand
in Fig. 4(a) are shown in Fig. 12. The Coriolis term is ignored
and the velocity measurement is not required. The desired
object displaces are 4 mm (X), 10 mm (Z), 0.5 rad (RZ).
The maximum settling time of all channels are 1.1 seconds.



Fig. 10. Illustration of the performance of MIC in Mujoco. The manipulated
object is subject to -20% mass uncertainty. The settling time is 3.6097
seconds. The oscillation in actual force is caused by unexpected contacts
between the object and the palm.
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Fig. 11. Illustration of the performance of the proposed dual-stage grasp
controller in Mujoco. The manipulated object is subject to -40% mass and
50% of MoI uncertainties. The maximum settling time of all channels are
1.6804 seconds.

VII. CONCLUSION

This paper has proposed a dual-stage grasp controller,
which includes a robust controller and a manipulation con-
troller, to achieve dexterous manipulation under object dy-
namics uncertainties and external disturbances. Feedback
linearization has been applied to reduce the nonlinearities
of the composite hand-object system. By utilizing the struc-
tures of the uncertainties, the proposed robust controller can
achieve faster convergence and tolerant more uncertainties
compared to other methods based on DOB and MIC. The
dual-stage formulation skipped complicated contact mod-
eling, and was able to regulate contact force and prevent
slippage. Moreover, it did not require joint/object velocity
measurement or 3D/6D tactile sensor. Simulations showed
that our method can achieve robust manipulation and the
fast tracking performance.

Currently, the proposed method is limited to dynamics
uncertainties. In the future, the authors plan to combine this
work with finger gaits planning [16] to address the unknown
object shape, unexpected slippage issues and realize large-
scale object motions.
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Fig. 12. Illustration of 3D manipulation performance using the proposed
algorithm. The manipulated object has -20% mass and 50% of MoI
uncertainties. The maximum settling time of all channels are 1.1064 seconds.
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