
Dexterity in Robotic Grasping, Manipulation and Assembly

Copyright 2019
by

Yongxiang Fan

1

Abstract

Dexterity in Robotic Grasping, Manipulation and Assembly

by

Yongxiang Fan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Industrial manipulators are programmed and integrated into different systems to deliver
various functions. Traditional industrial manipulators are highly efficient and precise in
mass production but deficient in flexibility and dexterity in mass customization due to the
heavy reprogramming efforts in limited product life cycle, variations of environments and
uncertainties during robot-environment interactions.

This dissertation aims to address the aforementioned deficiencies by improving the dex-
terity of industrial manipulators. The manipulators with proposed algorithms are required to
1) reduce the hand-engineering in end-effector design, parameter tuning and system integra-
tion, and 2) exhibit robustness to uncertainties during the interaction with environments.
The fulfillment of the requirements is decomposed into three aspects in this dissertation.
The first aspect is to realize kinematic dexterity by developing a unified grasping framework
with both customized end-effectors and general hands on objects of different categories. The
second aspect is to achieve dynamic dexterity by constructing an in-hand manipulation and
finger gaiting architecture to manipulate the grasped objects robustly and precisely. The
third aspect is to attain skill dexterity by designing an intelligent assembly algorithm to
learn assembly skills from uncertain environments.

The developed grasping framework actively avoids collision and is able to plan grasps
and trajectories efficiently with different hands. The grasp planning with industrial cus-
tomized grippers by surface fitting is introduced in Chapter 2, and the planning efficiency
is improved by a learning-based grasp explorer in Chapter 3. The transferring of grasps
from parallel grippers to multi-fingered hands by finger splitting is discussed in Chapter 4.
Chapter 5 further presents an optimization model to directly plan precision grasps with
multi-fingered hands. The final grasping framework is proposed in Chapter 6 by combining
the optimization model with a multi-dimensional iterative surface fitting, to improve the
grasp versatility and robustness of the optimization model. The constructed manipulation
architecture achieves robust grasping and dexterous manipulation under uncertainties. A
comprehensive architecture is introduced and verified with different physical multi-fingered
hands in Chapter 7. Chapter 8 proposes a robust manipulation controller within the archi-

2

tecture to further increase the robustness under various uncertainties. To relocate fingers
for long-range object motion, the manipulation architecture is augmented with a high-level
finger gaits planner in Chapter 9. The designed assembly scheme learns automatic assem-
bly skills with the proposed guided-deep deterministic policy gradient (guided-DDPG) in
Chapter 10. By combining supervised learning and reinforcement learning, the proposed
guided-DDPG is more efficient than reinforcement learning and achieves better stability and
robustness compared with supervised learning.

The proposed grasping and manipulation strategies with customized/general-purposed
grippers are able to reduce hand-engineering in mass customization and extend dexterities of
automation systems in both kinematic and dynamic levels. The proposed learning assembly
scheme increases the efficiency and stability of the assembly in contact-rich scenarios and
extends the dexterity of automation systems in skill level. The effectiveness of the grasping,
manipulation and assembly algorithms are verified by a series of simulations and experiments
on different manipulators and hands.

i

To My Family and Friends

ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Background of Dexterity Research . 1
1.2 Dissertation Outline . 2

I Grasping 7

2 Grasp Planning with Customized Industrial Grippers by Surface Fitting 8
2.1 Introduction . 8
2.2 Contact Surface Optimization . 10
2.3 Gradient-based Searching by Iterative Surface Fitting 11
2.4 Simulations and Experiments . 17
2.5 Chapter Summary . 21

3 Learning Efficient Grasp Exploration with Customized Grippers 23
3.1 Introduction . 23
3.2 The Hierarchical Learning Framework . 24
3.3 Learning-based Explorer . 24
3.4 Experiment Study . 27
3.5 Chapter Summary . 30

4 Transferring Grasps from Parallel Grippers to Multi-Fingered Hands by
Finger Splitting 31
4.1 Introduction . 31
4.2 Planning Multi-Fingered Grasps by Optimization 33
4.3 Finger Splitting . 34
4.4 Simulation Study . 41

iii

4.5 Chapter Summary . 47

5 Optimization Model to Plan Grasps with Multi-Fingered Hands 48
5.1 Introduction . 48
5.2 Optimization Model for Precision Grasps . 49
5.3 Iterative PPO-JPO for Precision Grasp Planning 51
5.4 Simulations and Experiments . 55
5.5 Chapter Summary . 59

6 Efficient Framework for General Robotic Grasping 61
6.1 Introduction . 61
6.2 General Optimization Model for Grasping 62
6.3 Grasp Planning and Imagination by MDISF-GTO 63
6.4 Simulations and Experiments . 73
6.5 Chapter Summary . 78

II Manipulation 81

7 Object Manipulation Architecture by Modified Impedance Control 82
7.1 Introduction . 82
7.2 In-Hand Manipulation Architecture . 83
7.3 Simulation Study . 87
7.4 Experiment Study . 91
7.5 Chapter Summary . 97

8 Robust Dexterous Manipulation under Various Uncertainties 99
8.1 Introduction . 99
8.2 Robust Manipulation Controller Framework 101
8.3 Modeling of Uncertain Manipulation Dynamics 102
8.4 Robust Manipulation Controller Design . 105
8.5 Simulation Study . 108
8.6 Experiment Study . 114
8.7 Chapter Summary . 123

9 Finger Gaits Planning for Robust Dexterous Manipulation 126
9.1 Introduction . 126
9.2 Dual-Stage Manipulation and Gaiting Framework 128
9.3 Real-Time Finger Gaits Planning . 128
9.4 Simulation Study . 134
9.5 Chapter Summary . 139

iv

III Assembly 142

10 Learning Industrial Assembly by Guided-DDPG 143
10.1 Introduction . 143
10.2 From Model-Free RL to Model-Based RL . 145
10.3 Guided-Deep Deterministic Policy Gradient (Guided-DDPG) 147
10.4 Simulations and Experiments . 149
10.5 Chapter Summary . 155

11 Conclusions and Future Works 156
11.1 Conclusions . 156
11.2 Discussion and Future Works . 159

A Robust Manipulation Control 163
A.1 Uncertainties Modeling . 163
A.2 Equivalence of Different Disturbance Placements 165

Bibliography 167

v

List of Figures

1.1 Structure of the dissertation. 3

2.1 An example grasp of cylinder objects by a customized gripper. 10
2.2 Illustration of the iterative surface fitting (ISF) including (a) correspondence

matching and (b) surface fitting. 12
2.3 The parallel jaw gripper with curved fingertips. 17
2.4 Illustration of grasp planning results on Oscar model. 18
2.5 Surface fitting errors of (a) ISF and (b) one execution of IPFO. 19
2.6 Simulation results on nine individual objects. 20
2.7 Experiment results on six individual objects. 21
2.8 Grasp planning experiment in a clutter environment. 22

3.1 Block diagram of the hierarchical learning framework with customized grippers. 25
3.2 Illustration of R-CNN pipeline for learning-based exploration. 25
3.3 The depth rendering. (a) Original scene. (b) Point cloud observed by two stereo

cameras. (c) Rendered depth images (d) Jet colormap. 26
3.4 Illustration of the training framework. 26
3.5 Database used to fine-tune the R-CNN for region detection. 27
3.6 The learning framework with RCNN-ISF implementation. 28
3.7 Grasp planning experiment in a clutter environment. (a) The initial object clut-

ter. (b)-(f) The consecutive grasps in the task. 29
3.8 Grasp planning results in four different clutter environments by RCNN-ISF. . . 30

4.1 Illustration of grasp planning problem with a three-fingered hand. 33
4.2 Finger splitting using dual-stage iterative optimization. (a) parallel grasp initial-

ization, (b) contact point optimization, (c) palm pose optimization. 34
4.3 Illustration of the CPO algorithm. (a) tangent space searching and (b) nonlinear

projection by reference tracking. 37
4.4 Illustration of the PPO algorithm. 39
4.5 Illustration of the hand structure. 42
4.6 Grasp planning examples for different objects with the multi-fingered hand. . . 43
4.7 Snapshots of finger splitting on a screwdriver. 45

vi

4.8 Quality improvement during iterative CPO-PPO on a screwdriver. 45
4.9 Normalized quality measurements including (a) the proposed quality metric. (b)

grasp isotropy, (c) wrench volume, and (d) Ferrari-Canny metrics. 46
4.10 Comparison of the initial optimal parallel grasp (Top) and the finger splitting

result (Bottom) in a physical simulator. 46

5.1 Illustration of grasp planning problem with a three-fingered hand. 49
5.2 Structure of the iterative PPO-JPO. 51
5.3 Illustration of collision detection. 53
5.4 Visualization of 5 out of 7 grasps found on Robot object. 56
5.5 Simulation result of the iterative PPO-JPO on Robot object. 56
5.6 Simulation results of iterative PPO-JPO on 12 different objects. 57
5.7 Error profiles of iterative PPO-JPO on Bunny object running 50 samples. . . . 58
5.8 (1) Experimental setup and (2-18) planning and execution results on 15 objects. 60

6.1 Illustration of the general grasping framework. 63
6.2 Illustration of the multi-dimensional iterative surface fitting (MDISF) algorithm. 64
6.3 Illustration of different collision types. 66
6.4 Weights shaping for (a) power grasp and (b) precision grasp generation. 69
6.5 (a) Point-box distance calculation. (b) Cloud-box distance calculation. 72
6.6 Visualization of MDISF iterations on Dragon object. 74
6.7 Profile of the error reduction during MDISF. 75
6.8 Simulation results of MDISF on ten objects. 75
6.9 Comparison of (Top) precision grasp mode and (Bottom) power grasp mode of

MDISF on Bunny object. 76
6.10 Trajectory snapshots for grasp execution including (Top) predefined finger mo-

tion, and (Bottom) optimized trajectory by GTO. 77
6.11 Illustration of the grasp experiments on 10 objects. 79
6.12 Snapshots of grasp planning in clutter environments with success rate 80/97. . . 80

7.1 (Top) Circuit board assembly and (Bottom) fruit packaging. 83
7.2 Illustration of the object manipulation architecture. 84
7.3 Illustration of the low-level force tracking control. 87
7.4 Two hands used in the simulation. 88
7.5 Snapshots of the 2D manipulation results with the proposed architecture. 89
7.6 Comparison of the object pose tracking error under 20% mass uncertainty with

(Left) MIC and (Right) disturbance observer in [58]. 90
7.7 Snapshots of a finger gaiting task with the proposed architecture. 91
7.8 Illustration of architecture on dynamic uncertainty and external disturbances. . 91
7.9 (Left) Type A and (Right) Type B hands for in-hand manipulation tasks. 92
7.10 Experimental setup for algorithm validation. 92
7.11 Control flow of the manipulation framework. 93

vii

7.12 Calibration results of BioTac SP sensor. 94
7.13 Force tracking with (a) Type A hand and (b) Type B hand. 95
7.14 Illustration of the robust grasp with Type A hand. 95
7.15 Force estimation error with the proposed network on a BioTac SP sensor. 96
7.16 Snapshots of the manipulation result following a sinusoidal trajectory. 96
7.17 Two kinds of singularities of Type A/B hands. 97

8.1 Different types of uncertainties in dexterous manipulation. 100
8.2 The general framework of the proposed robust manipulation controller. 101
8.3 Generalized plant with weighting functions. 106
8.4 Illustration of the closed-loop system. 106
8.5 Two hand models used in the simulation. 109
8.6 Comparison of the proposed RMC with the DOB and MIC. 109
8.7 Disturbance caused by LTI approximation. 111
8.8 Performance of 3D manipulation using the proposed algorithm. 111
8.9 The pose tracking errors under different mass and moment of inertia uncertainties. 112
8.10 Tracking errors and desired force under COM uncertainty. 113
8.11 Tracking errors and desired force under contact dynamics uncertainties. 113
8.12 Tracking errors and desired force under tactile uncertainty. 114
8.13 Experimental setup for RMC validation. 115
8.14 Manipulation structure for experimental validation. 116
8.15 Illustration of the contact force calculation. 116
8.16 Illustration of the normal contact force tracking results. 118
8.17 Snapshots of fixed pose tracking with RMC. 119
8.18 Pose error profile of fixed pose tracking with RMC. 120
8.19 Force profile of fixed pose tracking with RMC. 121
8.20 Snapshots of fixed pose tracking with (Above) MIC and (Bottom) RMC. 122
8.21 Fixed pose tracking error with MIC. 122
8.22 Fixed pose tracking error with RMC. 123
8.23 Snapshot of the feasible reference tracking with RMC. 124
8.24 Error profile of the feasible reference tracking with RMC. 125

9.1 The general framework of the proposed optimization based planner. 128
9.2 Comparison of the gradient projection method and the proposed planner. . . . 133
9.3 Illustration of jump control strategy on sharp edges. 134
9.4 Two hand models used in the simulation. 134
9.5 A lift and rotation task without (Top) and with (Bottom) the finger gaits planner.136
9.6 Tracking errors for the dual-stage optimization based planner. 136
9.7 The response of two-level planner under external disturbances. 137
9.8 Lift and rotation task for ellipsoid using an identical planner as cylinder. 138
9.9 Optimal quality rate from (9.6) in a typical contact relocation period. 138
9.10 Tracking errors under friction overestimation. 139

viii

9.11 Snapshots of box flipping using a three-finger hand. 140
9.12 Tracking errors and the disturbance torque from sides fingers in box flipping. . 141

10.1 (a) Guided Policy Search (GPS). (b) deep deterministic policy gradient (DDPG). 147
10.2 Illustration of the proposed guided-DDPG. 148
10.3 Two simulation tasks for algorithm evaluation. 151
10.4 Simulation animations on (Top) U-shape joint assembly and (Bottom) Lego brick

insertion. 151
10.5 Comparison of different supervision methods with Lego brick insertion. 152
10.6 Illustration of the supervision weights on Lego brick insertion. 153
10.7 Comparison of different algorithms for (a) Lego insertion and (b) joint assembly. 154
10.8 (a) Experimental setup, and (b) experimental results for Lego brick insertion. . 154
10.9 Adaptability validation of the proposed guided-DDPG. 155

ix

List of Tables

2.1 Numerical Results of Grasp Planning Simulation 19

3.1 Comparison of Baseline-ISF and RCNN-ISF . 29

4.1 Optimization Details for Grasp Generation . 44
4.2 Average Time Distribution for Grasp Generation 44
4.3 Computation Time (Seconds) for Different Methods 47

5.1 Numerical Results of the iterative PPO-JPO . 58

6.1 Numerical Results of the Grasping Framework 76

8.1 Parameters of Weighting Functions . 108
8.2 Weighting Functions of Barrett Experiment . 118

10.1 Comparison of DDPG and guided-DDPG . 154

x

Acknowledgments

The past five years in Berkeley has been a wonderful journey for me. I would not have
finished my PhD study without generous support from many people.

First of all, my deep and sincere gratitude goes to my advisor, Professor Masayoshi
Tomizuka, who is a remarkable person because of his professionalism and dedication as a
scholar, as well as the enthusiasm and patience as a mentor. His humor and optimism
illuminate those hard days of mine. His unconditional support and complete trust equip
me with strength to explore unknowns and overcome failures. The completeness of this
dissertation would not have been possible without his support and encouragement.

I would also like to express my gratitude to my qualifying and dissertation committee
members including Professor Roberto Horowitz, Professor Ruzena Bajcsy, Professor Shmuel
Oren, Professor Kameshwar Poolla, and Professor Kenneth Goldberg for their insightful
advices and invaluable guidance to the direction of my research and the completion of my
dissertation.

Special thanks to Berkeley fellowship, J. K. Zee Fellowship, Graduate Division Block
Grant, and FANUC Corporation for sponsoring my Ph.D. study. The generous financial
support from UC Berkeley and FANUC makes me concentrate on my research. In particular,
I would like to thank many experts in FANUC, including Dr. Wenjie Chen, Mr. Kaimeng
Wang, Mr. Tetsuaki Kato, Mr. Hiroshi Nakagawa, and Ms. Weijia Li for their consistent
discussion and tremendous support. Many parts of my dissertation would not have been
possible without their dedication.

Furthermore, I would like to thank my colleagues during my internships, including Dr.
George Wong, Dr. Hadi Akeel, Dr. Yaz Shehab in Brachium, Inc., and Dr. Yotto Koga,
Dr. Jieliang Luo in Autodesk, Inc. It is fantastic to work with these brilliant colleagues who
have sharpest thoughts and warmest hearts.

I am grateful to be a member of Mechanical Systems Control (MSC) laboratory over
the past five years. I received invaluable advices and tremendous support from former and
current members in robotic group: Professor Cong Wang, Dr. Chung-Yen Lin, Professor
Changliu Liu, Dr. Te Tang, Dr. Hsien-Chung Lin, Dr. Yu Zhao, Yujiao Cheng, Shiyu Jin,
Xinghao Zhu, Changhao Wang, and Ting Xu. I would also like to thank Professor Wenlong
Zhang, Dr. Yizhou Wang, Dr. Raechel Tan, Professor Minghui Zheng, Dr. Chen-Yu Chan,
Dr. Xiaowen Yu, Dr. Kevin Haninger, Dr. Junkai Lu, Dr. Shiying Zhou, Taohan Wang,
Dennis Wai, Liting Sun, Shuyang Li, Cheng Peng, Wei Zhan, Daisuke Keneishi, Yu-Chu
Huang, Zining Wang, Jianyu Chen, Kiwoo Shin, Chen Tang, Jiachen Li, Yeping Hu, Zhuo
Xu, Hengbo Ma, Jessica Leu, Lingfeng Sun, Yiyang Zhou, Ge Zhang, and Huidong Gao.
Thank you so much for your friendship, love and help throughout these years.

Last and foremost, my deepest gratitude goes to my parents and my beloved wife Qinqin
Si. Your unconditional love, support and encouragement are the strongest motivation of my
life. I could not have achieved these accomplishments without you. Thank you.

1

Chapter 1

Introduction

1.1 Background of Dexterity Research

Industrial manipulators have been applied in automation for decades. They are programmed
and integrated into different systems to deliver different functions such as painting, welding,
machining and assembly. Industrial manipulators are rigid, reliable, precise, and highly effi-
cient in traditional mass production [8], since the human labor applied in system integration
is neglectable in the long-lasting production lines. The recent popularity of mass customiza-
tion [45], however, presents considerable challenges for traditional industrial manipulators.
On one hand, the frequently changed supply chains require extensive hand-engineering to
redesign end-effectors, reprogram manipulators and reintegrate production lines, which sig-
nificantly increase the unit product cost. On the other hand, the personalized supply chains
with numerous workpieces introduce considerable variations and uncertainties, which expo-
nentially complicate the operation of workpieces and the assembly of products.

To address the aforementioned challenges in mass customization, industrial manipulators
are desired to equip dexterity to operate workpieces of large variations and assemble prod-
ucts under uncertainties. Three levels of dexterity including kinematic dexterity, dynamic
dexterity, and skill dexterity are defined and investigated in this dissertation. Kinematic
dexterity describes the capacity of approaching and reaching valid contacts on a target ob-
ject kinematically to move the object by a manipulator with desired end-effectors. Dynamic
dexterity refers to the capacity of exerting force to manipulate the target object dynamically
by an end-effector. Skill dexterity describes the ability to learn tasks efficiently and execute
the learned tasks competently.

Following the levels of dexterity for the system composed of manipulators and end-
effectors, this dissertation is divided into three parts including grasping, manipulation and
assembly. To achieve the kinematic dexterity, a unified grasping framework with customized
end-effectors/general hands is developed to reduce the redesigning and reprogramming efforts
to operate workpieces. First, a surface fitting algorithm is proposed for grasp planning with
customized industrial grippers. The reuse of customized grippers for grasping novel objects

CHAPTER 1. INTRODUCTION 2

of different categories extends the kinematic dexterity and minimizes the cost of hardware
modification (Chapter 2). The planning algorithm is incorporated with a learning-based
explorer in Chapter 3. The hierarchical learning structure improves the efficiency and keeps
the interpretability and reliability of the planning algorithm. Grasp planning algorithm for
multi-fingered hands is developed to further extend the kinematic dexterity on more gen-
eral grasping tasks. A finger splitting algorithm is developed in Chapter 4 to transfer grasps
from parallel grippers to multi-fingered hands. Parallel grasps are used to initialize the finger
splitting process in order to localize well-performed optima more efficiently. A stronger op-
timization model is proposed in Chapter 5 to plan grasps with multi-fingered hands directly
without the initialization of parallel grasps. The optimization model is able to converge to
local optima from arbitrary infeasible configurations. A general grasping framework is final-
ized in Chapter 6 by incorporating the optimization model with a multi-dimensional surface
fitting. The framework is able to produce versatile grasps robustly with both customized
grippers/multi-fingered hands under various uncertainties.

Kinematic dexterity alone, however, may not be sufficient to enable manipulators to form
stable grasps and manipulate workpieces dexterously. Dynamic dexterity is further investi-
gated not only to operate workpieces in a safe and reliable manner, but also to reduce the
cycle time of operation without placing and re-grasping the workpieces [61]. To achieve this,
grasp forces in the post-grasping stage have to be optimized in order to lift the object or fol-
low general object trajectories robustly and reliably. This type of force optimization is called
in-hand manipulation. A comprehensive in-hand manipulation architecture is proposed in
Chapter 7. The robustness is enhanced by a robust manipulation controller in Chapter 8.
The proposed controller is robust to various uncertainties and undesired end-effector prop-
erties. A finger gaits planner is introduced in Chapter 9 to realize long-range object motion
and reduce the cycle time of re-grasping.

The dexterity in kinematic and dynamic levels improves performance of industrial ma-
nipulators in operating the workpieces. To achieve full automation, industrial manipulators
have to develop skill dexterity to assemble workpieces into personalized products. The skill
dexterity is attained in Chapter 10 by designing an intelligent assembly algorithm called
the guided deep deterministic policy gradient to learn the assembly skills from uncertain
environments. The proposed algorithm reduces the effort in dedicated parameter tuning in
mass customization.

1.2 Dissertation Outline

The overall objective of this dissertation is to develop algorithms to improve the dexterity
of industrial manipulators. Three major levels of dexterity, including kinematic dexterity,
dynamic dexterity and skill dexterity, is discussed and explored. A series of dexterous tasks
including grasping, manipulation and assembly will be solved and evaluated by experiments
on different manipulators and end-effectors. Figure 1.1 shows the structure of the disserta-
tion. The chapter outlines are as follows. The experimental videos are available at [102].

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Structure of the dissertation.

Grasp Planning with Customized Industrial Grippers by Surface
Fitting

Customized grippers have broad applications in industrial production lines. Compared with
general parallel grippers, the customized grippers have specifically designed fingers to increase
the contact area with the workpieces and improve the grasp robustness. However, grasp
planning for customized grippers is challenging due to the object variations, surface contacts
and structural constraints of the grippers. Chapter 2 proposes an iterative surface fitting
(ISF) algorithm to plan grasps with customized grippers. ISF simultaneously searches for
optimal gripper transformation and finger displacement by minimizing the surface fitting
error. A guided sampling is introduced to avoid ISF getting stuck in local optima and
improve the collision avoidance performance. The proposed algorithm is able to consider the
structural constraints of the gripper and plan optimal grasps in real-time. The effectiveness
of the algorithm is verified by both simulations and experiments. Part of this work was
published in [20].

CHAPTER 1. INTRODUCTION 4

Learning Efficient Grasp Exploration with Customized Grippers

The grasp planning algorithm in Chapter 2 behaves well on single objects or light clutter
environments but becomes slow in heavy clutter environments. To plan grasps in clutter
environments with customized grippers, a grasp planner is desired to learn the graspability
of different regions. Chapter 3 proposes a learning framework to plan robust grasps for
customized grippers efficiently. The learning framework contains a low-level optimization-
based planner with ISF to search for optimal grasps locally, and a high-level learning-based
explorer to learn the grasp exploration based on previous grasp experiences. The high-
level learning-based explorer trains a region-based convolutional neural network (R-CNN)
to propose desired regions, which avoids ISF getting stuck in bad local optima and improves
the collision avoidance performance. The proposed learning framework with RCNN-ISF is
able to consider the structural constraints of the gripper, learn grasp exploration strategy
from previous experiences, and plan optimal grasps in heavy clutter environments efficiently.
The effectiveness of the algorithm is verified by experiments. Part of this work was published
in [19].

Transferring Grasps from Parallel Grippers to Multi-Fingered
Hands by Finger Splitting

Grasp planning for multi-fingered hands is computationally expensive due to the joint-contact
coupling, surface nonlinearities and high dimensionality, thus is generally not affordable for
real-time implementations. The planning method in Chapter 2 works well for parallel grip-
pers but remains challenging for multi-fingered hands. Chapter 4 proposes a strategy called
finger splitting, to plan precision grasps for multi-fingered hands starting from optimal paral-
lel grasps. The finger splitting is optimized by a dual-stage iterative optimization including
a contact point optimization (CPO) and a palm pose optimization (PPO), to gradually
split fingers and adjust both contact points and palm pose. The dual-stage optimization is
able to consider both object grasp quality and hand manipulability, address the nonlinear-
ities and coupling, and achieve efficient convergence within one second. Simulation results
demonstrate the effectiveness of the proposed approach. Part of this work was published
in [24].

Optimization Model to Plan Grasps with Multi-Fingered Hands

The finger splitting in Chapter 4 transfers grasps from parallel grippers to multi-fingered
hands. The transfer requires the initialization of optimal parallel grasps in order to con-
verge to well-performed local optima. To simplify the initialization, Chapter 5 proposes
an optimization model to directly search for precision grasps from arbitrary infeasible ini-
tial configurations. The model takes noisy point cloud of an object as input and optimizes
the grasp quality by iteratively searching for the palm pose and finger joints positions. The
collision between the hand and the object is approximated and penalized by sequential least-

CHAPTER 1. INTRODUCTION 5

squares. The collision approximation is able to handle the point cloud representation of the
objects with complex shapes. The proposed optimization model is able to locate collision-
free optimal precision grasps efficiently. The average computation time is 0.50 sec/grasp.
The searching is robust to the incompleteness and noise of the point cloud. The effectiveness
of the algorithm is demonstrated by experiments. Part of this work was published in [18].

Efficient Framework for General Robotic Grasping

In Chapter 6, the optimization model from Chapter 5 is further combined with a surface
fitting in order to form a general framework to plan versatile grasps and trajectories under
uncertainties with different types of hands. The framework includes a multi-dimensional iter-
ative surface fitting (MDISF) for grasp planning and a grasp trajectory optimization (GTO)
for grasp imagination. MDISF searches for optimal contact regions and hand configura-
tions by minimizing the collision and surface fitting error, and the GTO algorithm generates
optimal finger trajectories to reach the highly ranked grasp configurations and avoid colli-
sion with the environment. The proposed grasp planning and imagination framework plans
grasps and trajectories of different categories efficiently with gradient-based methods using
the captured point cloud. The framework is able to implement to both customized grippers
and multi-fingered hands. The found grasps and trajectories are robust to sensing noises and
underlying uncertainties. The effectiveness of the proposed framework is verified by both
simulations and experiments. Part of this work was published in [17].

Object Manipulation Framework by Modified Impedance Control

Chapter 2 - 6 improve kinematic dexterity by developing grasping algorithms with both
customized grippers and multi-fingered hands. However, kinematic dexterity itself is not
sufficient for stable workpiece operation. Appropriate force is required to grasp workpieces
robustly under uncertainties. We refer the capacity of end-effector to exert force for object
manipulation as dynamic dexterity. Dynamic dexterity is essential to simplify the placing/re-
grasping procedures and reduce the cycle time. To achieve the dynamic dexterity, Chapter 7
introduces a comprehensive architecture for dexterous in-hand manipulation. The architec-
ture includes a high-level robust controller for object Cartesian force generation, a mid-level
manipulation controller for contact force optimization, and a low-level force tracking con-
troller to track the optimized contact force. The architecture is able to run on hands with
torque/force/velocity inputs and resist certain level of mass uncertainties, contact uncertain-
ties and external disturbances. Part of this work was published in [23].

Robust Dexterous Manipulation under Various Uncertainties

To perform broad-scale manipulation tasks, it is desired that a multi-fingered robotic hand
can robustly manipulate objects without knowing the exact objects dynamics (i.e. mass
and inertia) in advance. However, realizing robust manipulation is challenging due to the

CHAPTER 1. INTRODUCTION 6

complex contact dynamics, the nonlinearities of the system, and the potential sliding during
manipulation. Chapter 8 proposes a robust manipulation controller within the architecture
in Chapter 7 to handle these challenges. In the first stage, feedback linearization is utilized
to linearize the nonlinear uncertain system. Considering the structures of uncertainties, a
robust controller is designed for the linearized system to obtain the desired Cartesian force
on the object. In the second stage, a manipulation controller regulates the contact force
based on the Cartesian force from the first stage. The robust manipulation controller is
able to realize robust manipulation without modeling contact, prevent the slippage, and
withstand 50% mass and 80% inertia uncertainties. Simulations and experiments verify the
effectiveness of the proposed method. Part of this work was published in [27].

Finger Gaits Planning for Robust Dexterous Manipulation

To perform long-range manipulation tasks, a multi-fingered robotic hand sometimes has to
sequentially adjust its grasping gestures, i.e. the finger gaits, to address the workspace lim-
its and guarantee the object stability. However, realizing finger gaits planning in dexterous
manipulation is challenging due to the complicated grasp quality metrics, uncertainties on
object shapes and dynamics, and unexpected slippage under uncertain contact dynamics.
With the architecture of Chapter 7 and robust manipulation controller from Chapter 8,
Chapter 9 further proposes a high-level finger gaits planner to handle these challenges. The
planner combines object grasp quality with hand manipulability. It is computationally effi-
cient and realizes finger gaiting without 3D model of the object. Moreover, the planner is
able to guarantee stability under unexpected slippage caused by uncertain contact dynamics.
The proposed dual-stage optimization based planner is verified by simulations on Mujoco.
Part of this work was published in [23] and [26].

Learning Industrial Assembly by Guided-DDPG

Skill dexterity is essential for industrial manipulators to achieve automatic assembly and
realize full automation. Traditional assembly tasks use predefined trajectories or tuned force
control parameters, which make the automatic assembly 1) time-consuming, 2) difficult to
generalize, and 3) not robust to uncertainties. Chapter 10 proposes a learning framework
for industrial assembly. The framework combines both the supervised learning and the re-
inforcement learning. The supervised learning utilizes trajectory optimization to provide
the initial guidance to the policy, while the reinforcement learning utilizes actor-critic algo-
rithm to establish the evaluation system even the supervisor is not accurate. The proposed
learning framework is more efficient compared with the reinforcement learning and achieves
better stability performance than the supervised learning. The effectiveness of the method
is verified by both the simulation and experiment. Part of this work was published in [28].

7

Part I

Grasping

8

Chapter 2

Grasp Planning with Customized
Industrial Grippers by Surface Fitting

2.1 Introduction

Grasping is an essential capability for robots to extend the functionality and execute complex
tasks such as assembly, picking and packaging. Compared with general parallel grippers,
the customized grippers are designed for particular class of grasping tasks by matching
the contact surface of the gripper with the geometry of the workpieces. As a result, the
customized grippers generally have larger gripping force and more robust grasp. For example,
the food industry may design particular grippers to grasp cakes from conveyors for food
packing, and the autonomous assembly line may require customized grippers to assure stable
grasp and precise localization.

The grasp planning for customized grippers is challenging. The traditional point contact
model or soft finger model [69] in grasp modeling is insufficient to describe the large surface
contact between the gripper and the object. Thus, the quality evaluation is ambiguous for one
particular grasp configuration. Therefore, it is desirable to exploit the surface information
of the gripper and the object for grasp planning.

There are several related works proposed to reveal the importance of contact surfaces
in grasp planning. A taxonomy of grasp is constructed to analyze grasp models and design
grippers [14, 13]. The taxonomy observes that both power grasps and precision grasps tend
to increase the contact surface to improve the stability and robustness of the grasp, where the
object is either surrounded by the palm and fingers in power grasps, or by the soft fingertips
in precision grasps.

In [37], a fingertip space is proposed to take into account the matching of the basic
fingertip geometry to object surface. The grasps are searched based on several layers of
fingertip space with different resolutions. This method assumes point contact between the
finger and the object, which is not the case for customized grippers with large contact
surfaces. To take advantage of the large contact surface on grasp stability and robustness,

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 9

the optimal grasps in [12] are searched by minimizing the distance between predefined points
on the hand and the surface of the object. The resultant grasps match the object surface by
enclosing the object with more contacts. However, the computation load is excessively heavy
for online implementations. The grasp synthesis for human hands using shape matching
algorithm is proposed in [52]. The algorithm matches hand shapes in a database to the
query object by identifying collections of features with similar relative placements and surface
normals. However, this approach requires lots of human demonstration to collect enough
hand pose samples. Therefore, the searching for proper grasps requires considerable time with
exhaustive sampling. The idea of matching the shapes of parallel grippers to the geometries
of objects is utilized in [43, 73] to accelerate the grasp searching speed by filling the parallel
gripper with the object. However, this method cannot be generalized to a gripper with
complicated shape like customized grippers. In [49, 62], the grasp strategy is trained in an
end-to-end manner from image to grasp policy with millions of grasping data. The resultant
policy reflects the importance of matching the fingertip with objects, while changing grippers
requires re-collecting data and re-training the policy.

In order to consider more complicated gripper shape, reduce the computation load, and
retrieve reliable and secure grasps, it is desired to match the surfaces on the gripper to the
object more precisely. The idea of shape registration using iterative closest point (ICP)
is first proposed in [5] and then refined by [40, 59, 108]. However, these approaches only
consider the alignment of one source object to one target object, while the surface matching
in grasp planning for customized grippers can be regarded as registering multiple surfaces on
different fingers to one target object. Moreover, the surfaces have to satisfy the constraints
of the grippers such as the jaw width, allowable DOFs and the alignment of contact normals.

Considering the specific surface matching problem in grasp planning, this chapter pro-
poses an iterative surface fitting (ISF) algorithm, where it fits the contact surface based on
a metric measuring the distance of gripper-object surface as well as the misalignment of the
contact normals. ISF takes the motions of both the palm and fingers into consideration by
a proposed iterative palm-finger optimization (IPFO). A guided sampling is also introduced
to encourage the exploration of the regions with high fitting scores.

The contributions of this chapter are as follows. First, the proposed algorithm achieves
simultaneous surface fitting and gripper kinematic planning by considering both the desired
grasp surfaces and the structural constraints of the gripper such as the jaw width and the
degree of freedoms (DOFs). Second, the proposed guided sampling avoids getting stuck in
the local optima by exploiting the previous grasping experience. The grasp planning by ISF
and guided sampling achieves a real-time planning and the time to search for a collision-
free grasp is less than 0.1 s in average for the objects in the simulation and experiment.
Furthermore, by combining with the dedicated gripper design, the proposed surface fitting
algorithm can deal with objects with complicated shapes and those in clutter environments
with unsegmented point clouds. The experimental videos are available at [102].

The remainders of this chapter are as follows. Section 2.2 formulates the grasp planning
of the customized grippers. Section 2.3 introduces the surface fitting method to solve the op-
timization for desired grasps. The simulations and experiments are presented in Section 2.4.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 10

Figure 2.1: An example grasp of cylinder objects by a customized gripper.

Section 2.5 summarizes the chapter.

2.2 Contact Surface Optimization

A grasp planning example with a customized gripper is shown in Fig. 2.1. The customized
gripper has parallel jaws with curved fingertip surfaces. The object to be grasped is a
cylinder. The objective of the grasp planning is to search for the optimal pose of the gripper
relative to the object by maximizing a quality metric considering the structural constraints
of the gripper. More concretely, it is formulated as

max
R,t,δd,Sf

j ,So
j

Q(Sf
1 ,Sf

2 ,So
1 ,So

2) (2.1a)

s.t. Sf
j ⊂ T (∂Fj;R, t, δd), j = 1, 2 (2.1b)

So
j = NN∂O(Sf

j), j = 1, 2 (2.1c)

(Sf
1 ,Sf

2) ∈ W(d0 + δd) (2.1d)

d0 + δd ∈ [dmin, dmax] (2.1e)

where j ∈ {1, 2} is the finger index, R ∈ SO(3), t ∈ R3 are the rotation and the translation
of the gripper jaw from the original pose, δd ∈ R is the finger displacement from the original
width d0, and Q represents the grasp quality with respect to the finger contact surfaces Sf

j

and the object contact surface So
j . The finger contact surface Sf

j lies on the finger surface ∂Fj

transformed by T , as shown in (2.1b). The object contact surface So
i is determined by the

nearest neighbor of the Sf
j on the object surface ∂O, as shown in (2.1c). Constraint (2.1d)

indicates that the finger contact surfaces should be in the workspace W parameterized by

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 11

the jaw width, and (2.1e) describes the constraint of the finger displacement. The optimiza-
tion (2.1) searches for the optimal gripper transformation (R∗, t∗) and finger displacement
d∗ by maximizing the grasp quality Q.

Problem (2.1) is a standard grasp planning problem if the contact surfaces are degener-
ated into points. In general surface contact situation, the point contact model may not be
able to incorporate the gripper surface directly into the planning. Problem (2.1) becomes
challenging to solve by either gradient based methods or sampling based methods. On one
hand, modeling the contact surfaces as decision variables is nontrivial in the gradient based
methods. On the other hand, the sampling based methods require exploring the whole state
space, which is not applicable for real-time implementation.

A natural surface-related quality can be constructed by matching the surfaces between the
object and the gripper. Intuitively, the grasp with small surface matching error (Fig. 2.1(a))
is more stable and robust compared with the one with large error (Fig. 2.1(b)). Therefore,
an iterative surface fitting (ISF) algorithm is proposed in this chapter to search for optimal
grasps of the gripper relative to the object. The optimality is in the sense of surface fitting
errors. The formulation is modified from the iterative closest point (ICP) by including the
structural constraints of different fingers such as the width and DOFs. ISF is initialized by
a guided sampling algorithm in order to avoid being trapped in local optima and achieve
collision avoidance.

2.3 Gradient-based Searching by Iterative Surface

Fitting

Iterative Closest Point

The ICP algorithm is first proposed in [5] for 3D shape registration. It searches for the
optimal rigid transformation to align the source surface towards the target surface by mini-
mizing the distance between them. The minimization is conducted by iteratively searching
the correspondence points of the surfaces and minimizing the Euclidean distance of these
correspondence points. More specifically, it is written as

min
R,t

m�

i=1

�Rpi + t− qi�22, (2.2)

where pi, qi ∈ R3 denote a correspondence pair on the source surface and the target surface,
and m is the number of the correspondence pairs. The correspondence of (pi, qi) is searched
by the nearest neighbor method. The optimal transformation (R, t) is calculated and applied
to the source surface, after which the correspondence is updated by searching with the nearest
neighbor again. These two steps are performed iteratively until convergence.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 12

Figure 2.2: Illustration of the iterative surface fitting (ISF) including (a) correspondence
matching and (b) surface fitting.

A relevant variation calculates the distance along the normal direction [11]:

min
R,t

m�

i=1

�
(Rpi + t− qi)

Tnq
i

�2
, (2.3)

where nq
i indicates the normal of the target surface on point qi. Instead of calculating the

Euclidean distance between the transformed source point and the corresponding target point,
the modification calculates the distance of the point to the plane by projecting the vector
to normal direction nq

i . Therefore, this modification allows the source surface to slide along
the flat target surface.

With the small rotation angle assumption, the rotation matrix R can be approximated by
I+ r̂, where r̂ ∈ so(3) represents the skew-symmetric matrix of the axis-angle vector r ∈ R3.
With this approximation, (2.3) can be solved analytically by a standard least squares

min
x

�Ax− b�22, (2.4)

where A = [aT1 , ..., a
T
m]

T , and b = [b1, ..., bm]
T with

ai =
�
(pi × nq

i)
T , (nq

i)
T
�
, (2.5a)

bi = (qi − pi)
Tnq

i . (2.5b)

The optimal solution for the transformation is then given by x =
�
rT , tT

�T
= (ATA)−1ATb

under the current correspondence.
The ICP algorithm, however, can only register one single surface to the target surface at

a time. In the grasping applications, a gripper usually consists of two or more fingers, which
are all expected to be fitted on the target workpiece. We propose an iterative surface fitting
(ISF) algorithm here to register multiple finger surfaces to the target workpiece at the same
time considering the allowable DOFs of fingers.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 13

Iterative Surface Fitting with Customized Grippers

For ease of illustration, the ISF algorithm is introduced using a customized gripper with two
fingers and one DOF, where the two fingers move in opposite directions to adjust the jaw
width (Fig. 2.2). The ISF algorithm iteratively executes two modules: the correspondence
matching and the surface fitting. The correspondence matching contains a nearest neighbor
search and an outlier/duplicate filtering. As shown in Fig. 2.2(a), given the point pij on
the gripper surface (black dots) on the j-th finger, a KD-Tree is employed to search the
nearest neighbor qij on the object surface (red dots), where the dash lines represent their
correspondence. The outlier filtering removes the pairs whose distances are excessively large
and the duplicate filtering considers the case where multiple points are assigned to the same
point on the object. In this case, only the pair with the minimum distance will be kept [108].
The outlier/duplicate filtering is particularly useful in our implementation since the gripper
surface and object surface overlap only partially, and rejecting these point pairs greatly
increases the robustness.

In Fig. 2.2(b), the surface fitting aims to search over the gripper transformation (R, t) as
well as the relative motion δd = d− d0 between the fingers, where d0 and d indicate the jaw
width before and during the optimization. The green gripper is the updated result by the
optimization, and the pink one is the converged result after several iterations of ISF. To be
more specific, the surface points are transformed to new locations by

p̄ij = Rpij + t+
1

2
(−1)jRvδd, j = 1, 2 (2.6)

where v ∈ R3 is a unit vector pointing from F1 to F2, as shown by the red arrow in Fig. 2.2(b).
Then the matching of contact points can be quantified by an point matching error metric,

Ep(R, t, δd) =
m�

i=1

2�

j=1

�
(p̄ij − qij)

Tnq
ij

�2

. (2.7)

An additional normal alignment error metric is

En(R) =
m�

i=1

�
(Rnp

i)
T nq

i + 1
�2

, (2.8)

where En represents the misalignment error between the normal of the gripper np
i and that

of the object nq
i . By minimizing En, the normals of the finger surface are forced to align

towards the normals of the object surface.
The surface fitting is to minimize the overall error

min
R,t,δd

E(R, t, δd) (2.9a)

s.t. δd+ d0 ∈ [dmin, dmax] (2.9b)

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 14

where E(R, t, δd) = Ep(R, t, δd) + α2En(R) represents the surface fitting error and α ∈ R is
the weighting factor that balances the the point matching and the normal alignment.

Problem (2.9) is nonlinear due to the coupling between the R and δd. In this chap-
ter, the palm transformation R, t and the finger displacement δd are solved by an iterative
palm-finger optimization (IPFO). The palm optimization optimizes for the optimal palm
transformation R∗, t∗ with fixed δd, while the finger optimization optimizes for the optimal
finger displacement δd∗ with fixed (R, t).

The palm optimization can be formulated as a least squares problem that is simi-
lar to (2.4) with an augmented matrix Ã = [AT

1 ,A
T
2 ,A

T
n]

T and an augmented vector
b̃ = [bT

1 ,b
T
2 ,b

T
n]

T , where Aj and bj are the point matching of each finger surface modi-
fied from (2.4), with pi in (2.5) replaced by p̃ij = pij + 0.5(−1)jvδd for j = 1, 2 to consider
the displacement of the finger. An and bn are additional terms to align the contact nor-
mals. Derived from (2.8), we can get An = [aTn,1, · · · , aTn,m]T and bn = [bn,1, · · · , bn,m]T with
an,i = [α(np

i ×nq
i)

T , 0T3] and bn,i = −α(np
i)

Tnq
i −α. Therefore, the palm optimization has the

closed form and can be represented as

x = (ÃT Ã)−1ÃT b̃. (2.10)

The finger optimization with fixed (R, t) in (2.9) is a one-dimensional constrained quadratic
programming,

min
δd

m�

i=1

2�

j=1

(bij − aijδd)
2 (2.11a)

s.t. δd+ d0 ∈ [dmin, dmax] (2.11b)

where aij = 0.5(−1)j−1(Rv)Tnq
ij
, and bij = (Rpij + t − qij)

Tnq
ij
. The optimal finger relative

motion is given by

δd∗ =

⎧
⎪⎨
⎪⎩

dmin − d0, if δd̂+ d0 < dmin

δd̂, if dmin ≤ δd̂+ d0 ≤ dmax,

dmax − d0, if δd̂+ d0 > dmax

(2.12)

with

δd̂ =

m
i=1

2
j=1 aijbij
m

i=1

2
j=1 a

2
ij

. (2.13)

The procedure of IPFO is summarized in Alg. (1). Given the correspondence (pi, qi) and
the corresponding normals (np

i , n
q
i) as inputs, IPFO minimizes the error metric (2.9a) in an

iterative manner (Line 5-6). The iteration stops when the error reduction is less than a
threshold Δe (Line 3).

Inspired by [40], ISF is optimized hierarchically by searching with a multi-resolution
pyramid, as shown in Alg. (2). The inputs to ISF include the initial gripper state Rc, tc, d0,

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 15

Algorithm 1 Iterative Palm-Finger Optimization (IPFO)

1: Input: (pi, qi), (np
i , n

q
i), d0

2: Init: Initialize δd∗ = 0, R∗ = I, t∗ = 03, ep = ∞
3: while ep − E(R∗, t∗, δd∗) > Δe do
4: ep ← E(R∗, t∗, δd∗)
5: {R∗, t∗} ← minR,t E(R, t, δd∗) by (2.10)
6: δd∗ ← minδd E(R∗, t∗, δd) by (2.12)
7: end while
8: return {R∗, t∗, δd∗, ep}

Algorithm 2 Iterative Surface Fitting (ISF)

1: Input: Initial state Rc, tc, d0, ∂O, ∂F , L, I0, �0
2: Init: ∂F = T (∂F ;Rc, tc, d0)
3: for l = L− 1, · · · , 0 do
4: Sf ← downsample(∂F , 2l), Il = I0/2

l, �l = 2l�0
5: Sf

0 ← Sf , es ← ∞, η ← 0, it ← 0
6: while η /∈ [1− �l, 1 + �l] and it++ < Il do
7: es,p ← es
8: So ← NN∂O(Sf)
9: {Sf ,So} ← filter(Sf ,So)
10: {R∗, t∗, δd∗, error} ← IPFO(Sf ,So, d0)
11: Sf ← T (Sf ;R∗, t∗, δd∗)
12: ∂F ← T (∂F ;R∗, t∗, δd∗)
13: d0 ← d0 + δd∗

14: es ← �Sf − Sf
0 �, η ← es/es,p

15: end while
16: end for
17: return {error, ∂F}

the surfaces ∂O and ∂F , and the parameters for hierarchical searching (Line 1). L, I0 and �0
denote the level number, maximum iteration and error bound for convergence, respectively.
The gripper surface ∂F is first transformed to the specified initial state (Line 2). In each level
of the pyramid, ∂F is downsampled adaptively to Sf with different resolutions (Line 4). The
while loop iteratively searches correspondence and solves for desired gripper motion. The
correspondence matching is conducted with the nearest neighbor search (Line 8) and with the
outlier/duplicate filtering (Line 9). The desired palm transformation and finger displacement
are optimized by IPFO (Line 10). Both the surface ∂F and its sample Sf are transformed
by the optimized gripper motion (Line 11-12). The while loop is terminated if IPFO gives a
similar transformation in adjacent iterations.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 16

Algorithm 3 Grasp Planning Algorithm

1: Input: ∂O, ∂F , center# K, sample# Ks, d0
2: Init: C ← k-means(∂O, K),regret = 0K ,trial = 0K
3: for It = 1, · · · , Ks do
4: Guided sampling:

k∗ ← argmink regret(k)
tc = C(k∗), Rc ← randRot()

5: ISF evaluation:
{error, ∂F̄} ← ISF(Rc, tc, d0, ∂O, ∂F)
col ← fcol(∂F̄ , ∂O)

6: Regret update:
regret(k∗) ← regret(k∗)·trial(k∗)+error

trial(k∗)+1

regret(k∗) ← (1 + γ · col)regret(k∗)
trial(k∗) ← trial(k∗) + 1

7: end for

Initialization and Sampling

The initialization of ISF is important since ISF converges to local optima. Multiple initial-
ization is desired for the algorithm to explore different regions of the object, so as to avoid
getting trapped in bad local optima and achieve better collision-avoiding solutions.

In this chapter, the object is firstly partitioned into K clusters by k-means clustering.
The center of each cluster is regarded as a candidate initial position of the gripper for ISF,
and the initial orientation of the gripper is randomly sampled.

We build an empirical model to guide the sampling among K candidates. Similar to the
multi-armed bandit model, we record the error of ISF evaluated in each cluster center and
compute the average regret accordingly. The average regret of each cluster center is used to
guide the succeeding sampling. The sampling process is summarized in Alg. (3).

The Alg. (3) is fed by the surfaces ∂O, ∂F and the parameters including the cluster
number K, the total sampling times Ks and initial jaw width d0. The sample centers
C ∈ RK is generated by k-means clustering (Line 2). The system stores trial ∈ RK and
regret ∈ RK to represent the previous sampling and evaluation experience. The sampling
is guided by the average regret, and the cluster center with the minimum regret is chosen
as the initial position of the gripper for the following ISF, while the initial orientation Rc

is randomly sampled (Line 4). The gripper with the sampled initialization is evaluated by
ISF and collision check (Line 5). The fcol(·, ·) is a boolean function that returns 1 when
the inputs have collision, i.e. two object surfaces have intersection. In Line 6, the average
regret of the k∗-th sample is updated by considering the surface fitting error and the collision
penalty. The γ is a penalty factor that penalizes the average regret for the collided samples.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 17

Figure 2.3: The parallel jaw gripper with curved fingertips.

2.4 Simulations and Experiments

In this section, both the simulation and the experiment results are presented to verify the
effectiveness of grasp planning algorithm. The experimental videos are available at [102]. The
computer we used was a desktop with 32 GB RAM and 4.0 GHz CPU. All the computations
were conducted by Matlab. We used a SMC LEHF20K2-48-R36N3D parallel jaw gripper
with the specialized fingers as shown in Fig. 2.3. The fingertips of the gripper and the
contact surfaces are marked by gray and red colors, respectively. The allowed finger motion
is shown by blue arrow. The desired contact surfaces are marked by red. The gripper width
was constrained by [dmin, dmax] = [1, 3] cm.

Parameter Lists

The initial gripper width was set as d0 = 2 cm. The weight for normal penalty was α = 0.01.
The convergence threshold was selected as Δe = 10−5 in Alg. (1). The pyramid level L,
the maximum iteration I0 and the tolerance �0 were set as 4, 200 and 0.008 respectively in
Alg. (2). The k-means center number K = 6, the sample number Ks = 60, and the collision
penalty γ = 0.2 in Alg. (3).

Simulation Study

The grasp planning optimized for grasps by guided sampling and ISF evaluation. The
proposed guided sampling enabled more efficient exploration by minimizing the average
regret based on the previous experience. The proposed ISF algorithm considered the surface
fitting by optimizing both the palm transformation and finger displacement.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 18

Figure 2.4 shows the grasp planning result on an Oscar model. The object and gripper
surface are shown by the blue and red dots in Fig. 2.4(a). The vertices of the object were
firstly processed by downsampling and normal estimation, after which the k-means clustering
ran for centers of initialization, as shown by bold dots. Multiple grasps were generated (shown
by red patches in Fig. 2.4(a)) and passed through the collision check function. The planned
collision-free grasp in the figure is represented by the pose of the solid gripper, while the
collided grasp is represented by the pose of the transparent one as shown in Fig. 2.4(b).

Figure 2.4: Illustration of grasp planning results on Oscar model.

Figure 2.5 shows the surface fitting errors of ISF and one execution of IPFO during the
grasp planning on Oscar model. The average distance between ∂F and ∂O was dropped from
10 mm to 1 mm by running ISF as shown in Fig. 2.5(a), where the shaded area is magnified
and shown in Fig. 2.5(b). The red line shows the finger displacement in different iterations
and the blue line shows the fitting error. The IPFO could achieve efficient convergence within
7 iterations.

The simulation results on different objects are visualized in Fig. 2.6. Some of the objects
(e.g. Doraemon and Bunny) were scaled to fit into the gripper range. The simulation details
for these objects are shown in Table 2.1. The second column shows the number of collision-
free optimal grasps over the total samples. The third column shows the total computation
time (i.e. the time to run Alg. (3)) to generate these grasps. The last column shows the
number of vertices for each object. The dragon was challenging to grasp due to collision
caused by the complex geometry. In average, the grasp planning took 2.33 s to find 36.2
collision-free grasps in 60 times of samples. Thus, each collision-free grasp took 64.4 ms in
average.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 19

Figure 2.5: Surface fitting errors of (a) ISF and (b) one execution of IPFO.

Table 2.1: Numerical Results of Grasp Planning Simulation

Objects
Collision Free Grasps

Total Samples
ttotal
(sec.)

Number of
Vertices

Hand 53/60 1.85 1939
Gun 36/60 2.45 2287
Car 18/60 1.68 2166

Oscar 31/60 2.03 3684
Dragon 3/60 5.61 3971
Bunny 33/60 1.56 740
Banana 54/60 3.82 1723

Screw Driver 58/60 1.71 930
Doraemon 40/60 1.84 769
Average 36.2/60 2.33 2022.1

Experiment Study

A series of experiments were further performed on a FANUC LR Mate 200-iD/7L industrial
manipulator to verify the effectiveness of the proposed algorithm. Two IDS Ensenso N35
stereo camera sets were used to capture the point cloud of the object. Compared with
simulation, the point cloud produced by Ensenso cameras was not able to reflect the object
precisely due to occlusion and noise. The point cloud was smoothed and used to estimate
the normals of the objects.

Figure 2.7 shows the grasp planning results on six different objects including three toy
robot models and three tools in different sizes. The left side for each subfigure shows the
observed point cloud and the optimized grasp, and the right side shows the grasp execution
result in lifting the object by 10 cm. Although some of the objects had complicated shapes,

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 20

Figure 2.6: Simulation results on nine individual objects.

ISF could find a grasp that matched the fingertips to the object surface well. Therefore, the
robot could firmly grasp the object and further increased the grasp robustness.

A picking task in a clutter environment was performed and shown in Fig. 2.8, where
several objects were placed closely (Fig. 2.8(a)). Figure 2.8(b-f) show the consecutive grasps
in the task. In this experiment, the proposed algorithm directly exploited grasp poses on the
unsegmented point cloud by fitting the fingertip surface to the object sets. Even though the
surface composed by the cluttered objects became more complicated than a single object,
ISF filtered out the grasps with collision and found a suitable grasp to pick up objects
sequentially.

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 21

Figure 2.7: Experiment results on six individual objects.

2.5 Chapter Summary

This chapter proposed an iterative surface fitting (ISF) algorithm to plan grasps for cus-
tomized grippers. ISF searches for optimal grasps by an iterative palm-finger optimization,
which solves for the optimal palm pose and the finger displacement iteratively with closed-

CHAPTER 2. GRASP PLANNING WITH CUSTOMIZED INDUSTRIAL GRIPPERS
BY SURFACE FITTING 22

Figure 2.8: Grasp planning experiment in a clutter environment.

form solutions. To avoid bad local optima, a guided sampling was introduced to initialize
ISF searching. The proposed grasp planning algorithm was applied to a series of simula-
tions and experiments. ISF achieved 64.4 ms average searching time to find a collision-free
grasp on the objects in simulations. The grasp planning was further implemented in clutter
environments to grasp objects from unsegmented point clouds.

23

Chapter 3

Learning Efficient Grasp Exploration
with Customized Grippers

3.1 Introduction

Chapter 2 presented an optimization-based planner called iterative surface fitting (ISF)
to search grasps with customized grippers. Guided sampling was introduced to initialize
and guide ISF in clutter environments to avoid ISF being trapped in ill-performed local
optima. We refer this structure the baseline-ISF. Baseline-ISF behaves well in light clutter
environments but becomes slow in heavy clutter environments.

To improve the efficiency of grasp planning in heavy clutter environments, we propose a
topological learning approach using regions with convolutional neural networks (R-CNN) [34]
to learn the essential features that affect the successful execution of grasps. The features in-
clude the spatial relationships between objects which are generally difficult to model. There-
fore, the input to the CNN is the patches of the candidate regions. This learning-based
planner is connected hierarchically with ISF in order to reduce the effect of object variations
and plan reliable/precise grasps under data shortage. Therefore, the learning framework
includes an optimization-based planner, which searches for precise grasp pose based on the
fine details of the selected region using ISF, and a learning-based explorer, which learns the
desired regions to start ISF searching.

Compared with end-to-end learning methods [62, 49], the proposed learning-based ex-
plorer ignores the details of grasp planning by detecting the desired regions within the image
plane for potentially high fitting scores and better collision avoidance performance, thus the
dimension of the learning module is lower than end-to-end learning. The optimization-based
planner searches for optimal grasps precisely in the chosen region based on the object-specific
features, which are generally not shared across objects and difficult to learn by end-to-end
manner. Therefore, the proposed learning framework is able to improve the learning effi-
ciency and performance at the same time.

The contributions of this chapter are as follows. The proposed hierarchical learning

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 24

framework provides a portable and reliable method to combine the precision and reliability
of the optimization-based planner and the efficiency and intelligence of the learning-based
explorer. On one hand, the proposed low-level optimization-based planner includes both the
fingertip surfaces and the structural constraints of the gripper such as the jaw width and
the allowable degree-of-freedoms (DOFs). It also achieves simultaneous surface fitting and
gripper kinematic planning. On the other hand, the proposed grasp exploration strategy
avoids getting stuck in the local optima by learning from the previous grasping experience.
The grasp planning by ISF and R-CNN achieves an efficient planning and the time to search
for a collision-free grasp is 1.5 secs for the objects in heavy clutter environments.

The remainder of this chapter first introduces the proposed learning framework in Sec-
tion 3.2. After which the learning-based explorer based on R-CNN is presented in Section 3.3.
Section 3.4 shows the experimental verification of the proposed framework with customized
grippers. Section 3.5 summarizes the chapter. The experimental videos are available at [102].

3.2 The Hierarchical Learning Framework

In this chapter, we propose a hierarchical learning framework to extend the baseline-ISF in
Chapter 2. To avoid being trapped into local optima and achieve better collision avoidance
performance in clutter environments, we propose a learning-based explorer to detect the
desired regions to initialize the low-level search. In summary, the learning framework includes
both the low-level optimization-based planner to search for optimal grasp poses precisely and
locally, and the high-level learning-based explorer to explore different grasp regions and avoid
local optima.

Figure 3.1 shows the overall learning framework. The proposed learning framework de-
couples the end-to-end learning into a low-level optimization-based planner and a high-level
learning-based explorer. The optimization-based planner searches for optimal gripper pose
and finger configuration with the iterative surface fitting (ISF) from Chapter 2. The learning-
based explorer detects the desired region to explore from the previous grasping experiences
with R-CNN. Compared with end-to-end learning methods, the optimization-based planner
is more precise and reliable when grasping on various unknown objects, and the learning-
based explorer is more efficient with much less training data and lower learning dimension.

3.3 Learning-based Explorer

The optimization-based planner solved by baseline-ISF in Chapter 2 is inefficient and sub-
optimal in heavy clutter environments. Meanwhile, we found that human tends to decouple
the process of choosing the desired grasp region from that of searching specific grasp poses
inside that region to increase the efficiency of the grasping. With this observation, we design a
learning-based explorer to initialize the baseline-ISF search. The explorer selects the regions

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 25

Figure 3.1: Block diagram of the hierarchical learning framework with customized grippers.

Figure 3.2: Illustration of R-CNN pipeline for learning-based exploration.

with potential low regret based on the previous grasp experiences. We use R-CNN to learn
a classifier in order to detect the desired regions for initialization.

R-CNN Pipeline

The pipeline of R-CNN is shown in Fig. 3.2. R-CNN is first introduced in [34] for object
detection. R-CNN contains a region proposal block to provide possible choices of regions.
The region proposal selects 2K regions with different sizes using the method such as selective
search. The regions are resized and fed into a CNN for feature extraction. The CNN can be
pre-trained by AlexNet [46] or VGG-16/19 [87]. The outputs of CNN are used to represent
the features of the region proposals. SVMs are applied to classify the regions and bounding
box regression is applied to further correct the positions of the bounding boxes.

R-CNN Training

We use a grasping pool with 25 objects. We randomly choose some of the objects and place
them in the workspace. The scene shown in Fig. 3.3(a) is observed by two stereo cameras
and the collected point cloud (Fig. 3.3(b)) is rendered as depth images. The closer of the
points to the camera, the more white they are in the depth image (Fig. 3.3(c)). The image is
further rendered into jet colormap (Fig. 3.3(d)). R-CNN takes the rendered depth images as

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 26

Figure 3.3: The depth rendering. (a) Original scene. (b) Point cloud observed by two stereo
cameras. (c) Rendered depth images (d) Jet colormap.

Figure 3.4: Illustration of the training framework.

inputs, and produces regions of interest (ROI) to initialize the ISF searching. The ROI used
for training is generated based on the optimal grasps found from baseline-ISF. The training
process is illustrated by Fig. 3.4. The R-CNN in this chapter is pre-trained by AlexNet
and is fine-tuned by the data we collected. In this stage, we use 250 data pairs with data
augmentation, producing 2000 data pairs to fine tune the network. Some of the data pairs
are illustrated in Fig. 3.5.

R-CNN Testing

At the test time, the trained R-CNN is applied to generate the ROI on the colormap. The
desired regions in the point cloud are then computed based on the box coordinates of ROI
in the image plane as well as their depth values. The centers of these regions are regarded as
the good initialization and ISF searches from these initial positions. The proposed learning
ISF is called RCNN-ISF and the framework is illustrated in Fig. 3.6. The proposed learning
framework with RCNN-ISF not only searches grasps locally within a small region, but also

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 27

Figure 3.5: Database used to fine-tune the R-CNN for region detection.

learns the large-scale grasp exploration using R-CNN. Therefore, it tends to provide better
initialization more efficiently than the baseline-ISF.

Compared with end-to-end learning [62, 49], the proposed RCNN-ISF method has the
following advantages. First, the learning dimension of the RCNN-ISF is generally lower
than that of the end-to-end learning. More specifically, RCNN-ISF searches ROI in the
two-dimensional image plane, while the end-to-end learning searches over higher dimension
depending on the grasps and grippers. For example, a grasp planning for a eight-DOF hand
with three fingers has 32 dimensions [24]. Therefore, the end-to-end learning requires much
more data than the proposed method. Secondly, ISF searches for optimal grasps based on
object-specific features that are not shared cross objects, instead of learning the behavior
end-to-end from millions of data. Consequently, ISF tends to generate more precise and
robust grasps. Moreover, RCNN-ISF is able to produce versatile grasp as the experiment
shows. On the contrary, the learned networks in [62, 49] produce top-down grasps with
simple parallel grippers.

3.4 Experiment Study

This section presents the experimental results of the proposed learning framework with
RCNN-ISF. The experimental videos are available at [102]. The learning framework includes

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 28

Figure 3.6: The learning framework with RCNN-ISF implementation.

the low-level optimization-based planner with baseline-ISF, and the high-level learning-based
explorer with R-CNN for grasp exploration in heavy clutter environments. The training
process of R-CNN is shown in Fig. 3.5.

Figure. 3.7 illustrates the performance of the RCNN-ISF in a light clutter environment.
In this environment, RCNN-ISF achieved comparable performance with the baseline-ISF.
The initial configuration of the object set is shown in Fig. 3.7(a). Figure 3.7(b)-(f) show the
consecutive grasps in the task. The left side of each subfigure is the depth image and the R-
CNN output of the confidence map for the desired regions, after which the baseline-ISF was
performed on the chosen regions, and the best grasp was executed by the FANUC industrial
manipulator, as shown in the right side of each subfigure. Even though the surface composed
by the cluttered objects became more complicated than a single object, RCNN-ISF was able
to successfully detect the desired regions for grasping and search on the selected regions for
the optimal collision-free grasp.

Figure 3.8 shows the grasp planning results in heavy clutter environments by RCNN-ISF.
The first row shows different clutter environments. R-CNN took rendered depth images as
inputs and generated the desired regions to initialize ISF searching, as shown in Fig. 3.8
(Middle). The optimization-based planner produced optimal grasp pose by minimizing the
fitting error and checking the collision/feasibility. The optimal grasps were executed by the
FANUC manipulator, as shown in Fig. 3.8 (Bottom).

The comparison between the baseline-ISF and RCNN-ISF is shown in Table 3.1 for the
clutter environments in Fig. 3.8. The searching in clutter environments is more difficult due
to the collision with environments and the excessive search space for guided sampling. Conse-
quently, the initialization becomes more important for efficient exploration. The baseline-ISF
requires to initialize and execute ISF multiple times sequentially in order to explore broader

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 29

Figure 3.7: Grasp planning experiment in a clutter environment. (a) The initial object
clutter. (b)-(f) The consecutive grasps in the task.

Table 3.1: Comparison of Baseline-ISF and RCNN-ISF

Methods Baseline-ISF RCNN-ISF
Search Time (s) 17.23 1.52
Found Grasps# 1 7

regions. On the contrary, RCNN-ISF employs the previous experience for initialization and
generates only a few low-regret regions to start ISF searching. Therefore, RCNN-ISF is able
to perform grasp planning more efficiently. In heavy clutter environments, the baseline-ISF
spent 17.23 secs to find 1 optimal grasp, while the proposed RCNN-ISF spent 1.52 secs to
find 7 optimal grasps.

CHAPTER 3. LEARNING EFFICIENT GRASP EXPLORATION WITH
CUSTOMIZED GRIPPERS 30

Figure 3.8: Grasp planning results in four different clutter environments by RCNN-ISF.

3.5 Chapter Summary

This chapter proposed a learning framework to plan robust grasps for customized grippers.
The learning framework includes a low-level optimization-based planner and a high-level
learning-based explorer. The optimization-based planner uses an iterative surface fitting
(ISF) with guided sampling to search for optimal grasps by minimizing the surface fit-
ting error. The performance of this low-level planner is locally effective and sensitive to
initialization. Therefore, the learning-based explorer was introduced with a region-based
convolutional neural network (R-CNN) to search for desired low-regret regions to initialize
ISF search. A series of experiments on robotic bin picking were performed to evaluate the
proposed method. Experimental results showed that the proposed learning framework with
RCNN-ISF achieved a more efficient planning in heavy clutter environments, by significantly
decreasing the average searching time from 17.23 secs to 1.52 secs.

31

Chapter 4

Transferring Grasps from Parallel
Grippers to Multi-Fingered Hands by
Finger Splitting

4.1 Introduction

Previous chapters introduced a grasp planning and exploration method with customized in-
dustrial grippers. Customized grippers behave reliable in mass production but usually require
considerable time to design hardware and program motion sequences in mass customization.
On the other hand, grasp planning for multi-fingered hands is important for robotic grasping
and manipulation in order to increase the dexterity and collaborate with humans. First, the
increase of joints offers more degree of freedoms (DOFs), which intrinsically provides more
manipulability, makes the grasp more dexterous than parallel-jaw grippers. Moreover, by
introducing more contact points, the grasp with multi-fingered hands is able to resist larger
disturbances during the grasping and manipulation tasks. A general purposed multi-fingered
hand will greatly simplify the procedure and improve the adaptability to new tasks. However,
the grasp planning for general purposed multi-fingered hands is challenging due to the large
variations of objects, coupling between the hand and objects, and high dimensionality of the
hand-object system. More specifically, a multi-fingered hand for general purposes should be
able to grasp different objects with various surfaces and sizes, from simple boxes to toys or
tools with complicated shapes. Moreover, a stable grasp relies on proper contacts between
the fingers and the object. The contacts that associate the hand and the object have to be
on the object surface and also reachable by all the fingers attached to the palm. Considering
the configuration of multiple fingers and aforementioned constraints, the searching for opti-
mal grasp in the sense of maximizing the object grasp quality and the hand manipulability,
becomes a high-dimensional problem, thus has strong limitation for real-time applications.

Due to the high dimensional state space, majority of the planning researches use sampling
based methods [65, 99, 12, 83, 88] by employing the precise 3D mesh model of the object. To

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 32

overcome the curse of dimensionality, the hand poses in [99] were sampled around the object
skeleton. To accelerate the inverse kinematics (IK) and collision detection during sampling,
the object and fingertip workspace in [83] were approximated as tree structures. A part-
based grasp planning method is proposed in [1] using Reeb graph, with the assumption that
the grasping is constrained in single part of the object. Objects are represented by inscribing
spheres in [78] and the grasp searching is conducted on qualified subset of spheres. Without
the gradient information, the sampling-based methods essentially rely on dense sampling and
heavy manually-designed heuristics. In [38], a hierarchical finger space is generated on object
surface and the grasps are synthesized by a multi-level refinement strategy. The mapping
from the contact pairs to hand configuration is obtained by an object-specific reachability
table generated offline.

Compared with multi-fingered hands, the grasp planning for parallel grippers is conducted
in much lower dimensional space due to the simpler gripper structures and fewer constraints.
In [49], a deep reinforcement learning approach is proposed to directly learn the grasping
policy from images. The grasping skills are learned from exploration measured by empirical
success rate. Some others utilize databases to learn grasps for similar objects, these include
the Columbia grasp database [35] and dexterity network (Dex-Net) [62].

In this chapter, we will study the knowledge transfer from grasps for parallel grippers
to those for multi-fingered hands. We propose a strategy called finger splitting, to generate
precision grasps for a multi-fingered hand from parallel ones. To be more specific, the
multi-fingered hand is initialized by a parallel grasp with two contacts by assuming that the
fingers are separated into two groups around contacts. The grasps for parallel grippers can be
computed from database for parallel grippers [62] or planned by iterative surface fitting (ISF)
in Chapter 2. Then the splitting algorithm gradually spreads all fingers from the original
two contacts by optimizing both the object grasp quality and the hand manipulability. An
optimal grasp with proper palm pose, joint angles and contacts will be generated after
splitting.

The contributions of this chapter are as follows. First, a novel finger splitting strategy is
proposed to transfer the knowledge from grasp databases for parallel grippers to planning of
precision grasps for multi-fingered hands, where only fingertips are contacted with the ob-
ject. The transferring leads to better feasibility guarantee and faster convergence. Moreover,
a dual-stage iterative optimization algorithm is proposed to control the splitting behavior
and search for optimal configurations to maximize both the object grasp quality and the
hand manipulability. The dual-stage optimization effectively reduces the coupling between
the palm and contacts and decomposes the high-dimensional optimization problem into two
lower dimensional optimizations with fewer constraints. Furthermore, the decomposed opti-
mizations are solved by customized gradient projections. The customization avoids modeling
of the object surface and is computationally efficient. The average computation time is less
than one second for the objects of different categories, and is appealing for real-time ap-
plications. The proposed approach is verified by simulations, and the simulation video is
available at [102].

The remainder of this chapter is described as follows. First, the problem of a general grasp

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 33

planning for multi-fingered hands is stated in Section 4.2, followed by a detailed explanation
of the proposed finger splitting in Section 4.3. Simulation results are presented in Section 4.4.
Section 4.5 concludes this chapter and proposes future works.

4.2 Planning Multi-Fingered Grasps by Optimization

This section describes a general precision grasp planning problem with a three-fingered
robotic hand illustrated in Fig. 4.1. The goal of the planning is to search for optimal contacts
on the object and the associated hand configuration that maximize the object grasp quality

and the hand manipulability. The contact position vector is denoted by c =
�
cT1 , c

T
2 , c

T
3

�T
,

where ci ∈ R3 is the contact for the i-th finger. The joint angle vector of the hand is denoted

by q =
�
qT1 , q

T
2 , q

T
3

�T
, where qi ∈ RNjnt,i is the joint angle for the i-th finger and Njnt,i is

the number of joints for the i-th finger. The pose of the palm is represented by rotation
R ∈ SO(3) and translation t ∈ R3. The contacts can be modeled as point contact with
friction model [69] and would exhibit rotational freedoms. They can be represented as ball

joints and characterized by Euler angles E =
�
ET

1 , E
T
2 , E

T
3

�T
, where Ei ∈ R3 is the Euler

angle for the i-th contact. Mathematically, the grasp planning problem can be formulated

Figure 4.1: Illustration of grasp planning problem with a three-fingered hand.

as:

max
R,t,q,E,c

Q(c, q) (4.1a)

s.t. (R, t) = FKc2p(q,E, c) (4.1b)

ci ∈ ∂O i = 1 · · · 3 (4.1c)

qi ∈ [qmin,i, qmax,i] i = 1 · · · 3 (4.1d)

where Q(c, q) is the overall grasp quality containing both the object grasp quality and
the hand manipulability, FKc2p is the forward kinematics from contacts to the palm, and
qmin,i, qmax,i ∈ RNjnt,i are joint limits for the i-th finger. Constraint (4.1b) connects the
palm and contacts through finger joints, (4.1c) constrains contacts on the object surface ∂O,

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 34

��� ��� ���

Figure 4.2: Finger splitting using dual-stage iterative optimization. (a) parallel grasp ini-
tialization, (b) contact point optimization, (c) palm pose optimization.

and (4.1d) shows the joint limits. With the palm pose, joints and contacts as optimization
variables, the forward kinematics (4.1b) and complicated object surface (4.1c) as constraints,
the problem (4.1) becomes a high-dimensional nonlinear programming. The optimization
may become more challenging when considering collision (i.e. unexpected contact) between
the hand and object.

In this chapter, we propose a finger splitting strategy to solve (4.1). The finger splitting
separates all the fingers into two groups and gradually spread them to maximize the object
grasp quality and the hand manipulability. The idea of finger splitting is shown in Fig. 4.2.
The initial parallel grasps can be generated by database (e.g. Dex-Net [62]) or computed by
ISF in Chapter 2, as shown in Fig. 4.2(a), after which a dual-stage iterative optimization is
introduced to search for new contacts and hand configuration. Stage one is named as contact
point optimization (CPO). The objective of the CPO is to maximize the object grasp quality
and hand manipulability by searching for contacts c and joints q while keeping palm pose
R, t fixed, as shown in Fig. 4.2(b). Stage two is called palm pose optimization (PPO). The
objective of PPO is to improve the hand manipulability by searching over the palm pose R, t
and joints q while keeping the contacts c fixed, as shown in Fig. 4.2(c). The CPO and PPO
will be iteratively executed until converge or termination conditions are reached.

4.3 Finger Splitting

Contact Point Optimization (CPO)

The CPO searches for desired contacts and joints to maximize the object grasp quality
and the hand manipulability by assuming that the palm pose R, t is static. The CPO is

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 35

formulated as:

max
c,q

Q(c, q) (4.2a)

s.t. c = FKc2p(q, R0, t0) (4.2b)

ci ∈ ∂O i = 1 · · · 3 (4.2c)

qi ∈ [qmin,i, qmax,i] i = 1 · · · 3 (4.2d)

where Q(c, q) = w1Qo(c) + w2Qh(q) indicates the overall grasp quality composed by the
object grasp quality Qo and the hand manipulability Qh. The object grasp quality Qo can
be represented by the triangle area formed by the contacts: Qo(c) = 2Area ({ci}i=1···3) [91],
and the hand manipulability Qh can be represented by the deviation from the center of the

joints: Qh(q) = −0.5

3

i=1

Njnt,i

j=1

�
(qji − q̄ji)/(q

j
max,i − qjmin,i)

�2
based on [54], where qji is the

j-th joint angle of the i-th finger, qjmin,i and qjmax,i are the limits of qji , q̄
j
i = (qjmax,i + qjmin,i)/2

is the middle position of the corresponding joint. FKq2c is the forward kinematics from joint
q to contact c, and R0, t0 denote the fixed rotation and translation of the palm.

Optimization (4.2) remains a nonlinear programming due to the nonlinearities of (4.2b)
and (4.2c). Moreover, the object surface has to be fitted and fed into the optimization
before running the gradient based method. In [23, 26], we introduced a velocity-level finger
gaits planner for dexterous manipulation. A similar approach is proposed in this chapter to
solve (4.2). The idea is to iteratively search on tangent space and project to the nonlinear
constraints.

Tangent Space Searching

The tangent space searching is to find the displacement vectors in order to maximize the
quality in the next time step. More specifically,

max
dc,dq

∇cQ(c, q)dc +∇qQ(c, q)dq (4.3a)

s.t. dc = Jq2c(q, R0, t0)dq (4.3b)

nT (c)dc = 0 (4.3c)

�d� ≤ σcpo (4.3d)

where dc = c(t+Ts)−c(t) and dq = q(t+Ts)−q(t) are displacement vectors for contacts and
joints, Ts is the simulation time step, and d = [dc

T ,dq
T]T . Jq2c = diag ([Jq2c,1, Jq2c,2, Jq2c,3])

denotes a geometric Jacobian from q to c, and Jq2c,i ∈ R3×Njnt,i is the translational Jacobian
for the i-th finger. n(c) = diag

��
∇T

c1
(∂O),∇T

c2
(∂O),∇T

c3
(∂O)

��
is the surface normal matrix

of the contacts, and ∇ci(∂O) ∈ R1×3 is the normalized surface gradient w.r.t. ci. σcpo is step
size constraint.

Optimization (4.3) is the tangent approximation of (4.2) and can be solved analyti-
cally [60] by:

d∗ = α∗d0

d0 = (I − AT (AAT)−1A)∇xQ
T (x)

(4.4)

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 36

where d∗ = [d∗
c
T ;d∗

q
T]T is optimal tangent displacement vector and A = [nT (c), 0;−I9, Jq2c],

x = [cT , qT]T . α∗ is the optimal step size obtained by:

α∗ =

⎧
⎨
⎩
σcpo/�d0�, if Fls = 0

argmax
0≤α≤σcpo/�d0�

(Q (Proj (x+ αd0))) , if Fls = 1

where Fls is the option for line search, and the Proj represents projection operation intro-
duced below. The line search can be disabled (i.e. Fls = 0) empirically to accelerate the
computation, though it would introduce certain oscillation.

Nonlinear Constraints Projection

Several steps are taken in order to project the tangent state x+ αd0 back to the nonlinear
constraints h(c, q) = {c ∈ ∂O, c = FKq2c(q)}. First, the reference nearest neighbor cref of
the optimal tangent contacts c+ d∗

c is searched by KD-Tree on the object surface. Second,
the found nearest neighbor cref ∈ ∂O is tracked by a simple stiffness controller q̇des =
J−1
q2c(c)Kcpo(cref − f), where f is the current fingertip position vector. Last, the joint state

in simulator is updated by qdes ← q + q̇desTs if the termination condition is not satisfied.

Collision Detection

Unexpected contact between the object and the hand is called collision in this chapter since
it might effect the execution of the optimized grasps. A simple collision detection algorithm
is introduced to stop the finger splitting upon collision. The algorithm takes supervoxel
representation of the object [72] as input, and check the inclusion relation of each supervoxel
in finger links. The supervoxel representation usually only includes hundreds of points and
the finger links are approximated by boxes or cylinders, thus the collision detection can be
extremely fast. The collision detection is implemented in both CPO and PPO.

Finally, the overall CPO algorithm is summarized in Alg. (4). The CPO will be termi-
nated once the quality increment is less or equal than δc, or the angle between the surface
normal ndes and a predefined artificial fingertip normal nf (qdes) is larger than γ, as shown
in Line (7). A graphical illustration of the CPO algorithm is shown in Fig. 4.3. Figure 4.3(a)
describes the tangent space searching (blue arrow line) and the nearest neighbor search (red
arrow line) of the reference contact corresponding to Line (3-4), and Fig. 4.3(b) shows the
tracking of the reference contact (purple arrow line) and estimation of the desired contact
(red arrow line) corresponding to Line (6-7). The CPO is able to handle the case where the
initial fingertip positions are not on the object surface by using the tracking control.

Palm Pose Optimization (PPO)

The CPO optimizes contact points by assuming that the palm pose is constant. However,
the palm might not be in the best pose, thus the CPO can only find a local optimum in

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 37

��� ���

Figure 4.3: Illustration of the CPO algorithm. (a) tangent space searching and (b) nonlinear
projection by reference tracking.

Algorithm 4 Contact Point Optimization (CPO)

1: Input: Static palm pose R0, t0, initial states c, q
2: while itcpo++ < M do
3: Search tangent motion d∗

c in (4.3) by solving (4.4)
4: Search reference contact cref ← NN∂O(c+ d∗

c)
5: Track reference contact q̇des ← J−1

q2cKcpo(cref − f)
6: Compute desired state qdes, cdes,ndes by:

qdes ← q̇desTs + q
(cdes,ndes) ← NN∂O(FKq2c(qdes, R0, t0))

7: Test termination: ΔQdes = Qdes(cdes, qdes)−Q(c, q)
stop ← (ΔQdes ≤ δc) � (|ndes

Tnf (qdes)| ≥ γ)
collide = col detect(qdes, R0, t0)

8: if stop � collide then break
9: end if
10: Set state q ← qdes, c ← cdes, n ← ndes

11: end while

subspace S = {c ∈ ∂O, q ∈ [qmin, qmax] | R0, t0}. In this section, the palm pose optimization
will be introduced to maximize the overall grasp quality assuming that the contact points
are static (i.e. object grasp quality Qo is constant). PPO can be formulated as:

max
R∈SO(3),t,q,E

Q(c0, q) (4.5a)

s.t. (R, t) = FKc2p(c0, q,E) (4.5b)

qi ∈ [qmin,i, qmax,i] i = 1...3 (4.5c)

where c0 is the current static contacts on the object. The optimization (4.5) is nonlinear
because of the constraint (4.5b) and R ∈ SO(3). Similar to CPO, PPO in this section is

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 38

solved by linearization and projection.

Tangent Space Searching

Considering the relativity between the object and the hand motion, the hand palm is assumed
to be static and object pose is optimized in PPO, since it is easier to implement and would
increase the robustness to numerical errors. Rather than taking derivative of (4.5b), we notice
that the linearization of (4.5b) is closely related to the fundamental grasping constraint [69]:

G(xpo, q)
TV b

po = Jh(xpo, q)q̇ (4.6)

where xpo = [tTpo, E
T
po]

T ∈ R6 is a local parameterization of the object pose in palm frame P ,
with tpo and Epo denoting the translation and orientation components, respectively. V b

po =

[vbpo
T
,ωb

po
T
]T ∈ R6 is the body velocity of the object, with vbpo and ωb

po denoting the trans-
lational and rotational velocities, respectively. G(xpo, q) ∈ R6×9 and Jh(xpo, q) ∈ R9×Njnt

represent grasp map and hand Jacobian [69]. Equation (4.6) connects joint velocity and
object velocity under the static contact condition. The optimization (4.5) can be solved by
utilizing this connection and searching on the tangent space. If V b

po and q̇ are treated as the
tangent displacements in one time step, then the tangent space searching of (4.5) becomes:

max
V b
po,q̇

∇qQ(c0, q)q̇ (4.7a)

s.t. G(xpo, q)
TV b

po = Jh(xpo, q)q̇ (4.7b)

�q̇� ≤ σppo (4.7c)

where σppo is a trust region of the joint motion. Similar to (4.3), (4.7) can be solved analyt-
ically as:

V b
po,des = σppodc/�dq�

dc = G
�
GTG+ JhJ

T
h

�−1
Jh∇T

qQ

dq = ∇T
qQ− JT

h

�
GTG+ JhJ

T
h

�−1
Jh∇T

qQ

(4.8)

The desired tangent displacement of the object is represented as V b
po,desTs.

Nonlinear Projection

With the desired object tangent displacement in one step V b
po,desTs, the desired object pose

gpo,des = (Rpo,des, tpo,des) can be obtained by

gpo,des = gpoe
V̂ b
po,desTs (4.9)

where V̂ b
po,des ∈ se(3) is the matrix representation of V b

po,des shown in [69] and gpo ∈ SE(3)
denotes the current object pose in palm frame. The joint qdes is computed as follows. First,
the position cpdes and translational velocity vp

c,des of the static contact in palm frame is

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 39

��� ��� ���

Figure 4.4: Illustration of the PPO algorithm.

obtained by the desired object motion V b
po,des, after which a tracking controller is applied to

compute the projected joint velocity q̇des by tracking both the position and velocity of the
reference contact:

q̇des = J−1
q2c

�
vp
c,des +Kppo(c

p
des − f p)

�
(4.10)

where fp ∈ R9 is the current fingertip position vector in palm frame, and Kppo is the tracking
gain used to reduce the misalignment between cp and fp during projection. With the
projected displacement q̇desTs, the desired finger joints can be computed as qdes = q+ q̇desTs.

Finally, the overall PPO algorithm is summarized in Alg. (5). PPO is terminated once the
quality increment is less than δp, or angle between the surface normal ndes and the artificial
fingertip normal nf (qdes) is larger than γ, as shown in Line (7). A graphical illustration of the
PPO algorithm is shown in Fig. 4.4. Figure 4.4(a) shows the desired tangent space motion
of the palm w.r.t. the object (orange arrow lines), and Fig. 4.4(b) shows the equivalent
tangent space motion of the object w.r.t. the palm (blue arrow lines) corresponding to
Line (3) based on the relativity of motion. Fig. 4.4(c) shows the computing and tracking of
the desired contacts (red arrow line) corresponding to Line (4-6).

Iterative CPO-PPO

The proposed finger splitting decouples the optimization of palm from contacts, thus is
capable to accelerate the computation and implement in real-time applications. CPO and
PPO are iteratively optimized to achieve the finger splitting, as shown in Alg. (6).

The iterative CPO-PPO takes a parallel grasp and object mesh as inputs, as shown in
Line (1). A simple function Map can be designed based on the structure of the hands
to convert the parallel grasp parameterized by contacts c1, c2 and approach vector vap into
a grasp for the multi-fingered hand parameterized by {c, q, R, t}, as shown in Line (2).
The mapped initial grasp is adjusted by the proposed CPO/PPO. The CPO and PPO are
optimized sequentially in the loop, as shown in Line (4-5). The iterative CPO-PPO will be
terminated if both the CPO and PPO are close to convergence or reaching the constraint

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 40

Algorithm 5 Palm Pose Optimization (PPO)

1: Input: Static contact c0 on object, initial joint q
2: while itppo++ < M do
3: Compute object V b

po,des, gpo,des by (4.8) and (4.9)
4: Compute desired contact cpdes,v

p
c,des by:

cpdes,i ← Rpoci + tpo
vpci,des ← Rpo(v

b
po − ci × ωb

po)
5: Track desired contact by (4.10)
6: Compute desired joint qdes by qdes ← q̇desTs + q
7: Test termination ΔQdes = Q(c0, qdes)−Q(c0, q)

stop = (ΔQdes ≤ δp) � (|ndes
Tnf (qdes)| ≥ γ)

collide = col detect(qdes, gpo,des)
8: if stop � collide then break
9: end if
10: Set state q ← qdes, gpo ← gpo,des
11: end while

Algorithm 6 Iterative CPO-PPO

1: Input: Parallel grasp {c1, c2, vap}, object mesh ∂O
2: Init: Initialize state {c, q, R, t} ← Map(c1, c2, vap, ∂O)

itcpo = 0; itppo = 0
3: while True do
4: Optimize contacts by Algorithm (4):

{c, q, itcpo} ← CPO(R, t, c, q)
5: Optimize palm pose by Algorithm (5):

{(R, t)−1, q, itppo} ← PPO(c, q)
6: if itcpo < m and itppo < m then break
7: end if
8: end while

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 41

boundaries, as shown in Line (6-7). m ∈ Z+ denotes an iteration threshold to stop the finger
splitting. A graphical illustration of the iterative CPO-PPO is shown in Fig. 4.2.

Convergence of the Iterative CPO-PPO

The convergence of the proposed iterative CPO-PPO is proved in this section using the
global convergence theorem [60]. Firstly, we show that CPO converges to a local optimum
if solved by Alg. (4). Based on the global convergence theorem, the convergence of the CPO
requires 1) compact domain, 2) existence of a continuous decent function, and 3) closeness
of the algorithmic mapping outside of the solution set. The domain D = ∂O× SE(3)×Rnq

is apparently compact. As for the continuous decent function, we use −Q(x) as the decent
function, it is continuous and decent at the outside of the solution set. Furthermore, the
algorithmic mapping composited by the tangent space searching T and nonlinear projection
P is closed in the absence of inequality constraints, since T is continuous and point-to-point,
and P is closed in T (x). Therefore, the CPO solved by Alg. (4) converges to a local optimum.
Similarly, PPO converges to a local optimum if solved by Alg. (5).

Secondly, we prove that the iterative CPO-PPO converges to a local optimum of (4.1).
The composite mapping Adual = Acpo ◦ Appo is closed since Appo is a continuous point-to-
point mapping and Acpo is closed on Appo(x), where Acpo is Alg. (4) and Appo is Alg. (5).
Therefore, we conclude that (4.1) solved by Alg. (6) converges to a local optimum.

4.4 Simulation Study

Simulation results are introduced in this section to verify the effectiveness of the iterative
CPO-PPO. The simulation video is available at [102]. The grasp planning process was
computed in Matlab, visualized in V-REP [80], and tested in Mujoco physics engine [96] on
a Windows PC with 4.0GHz CPU and 32GB RAM. We used a build-in Barrett hand model
but removed joint coupling and enabled all eight degree of freedoms (DOFs), as shown in
Fig. 4.5.

Parameter Lists

Simulation time step Ts = 0.05 sec. The weights of grasp quality w1 = 1, w2 = −0.01 in (4.2).
The maximum iteration M = 50 and termination condition γ = 0.6 in Alg. (4) and (5). The
minimum iteration bound m = 2 in Alg. (6). The tracking gain Kcpo = Kppo = 2I9 and
termination condition δc = δp = 0. The σcpo and σppo represent the trust regions of the
search to guarantee the accuracy of the approximation of the cost and constraints, and
are determined by the smoothness of object surface and kinematics of joints. Empirically
σcpo = 0.15 and σppo = 0.5.

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 42

Figure 4.5: Illustration of the hand structure.

Finger Splitting Results

Figure 4.6 shows ten grasping examples by the proposed algorithm. The tested objects
cover several categories including fruits (apple), toys (Doraemon, Hello Kitty, Oscar), animal
(bunny), and tools (mug, screwdriver) with different number of vertices (100 - 150,000).
To test the adaptability to different initial conditions, we also tested the grasping of the
same object with different poses (e.g. Hello Kitty(H) shows the horizontal grasp of Hello
Kitty, and bunny(R) denotes grasping of bunny with reverse pose). Each object was first
smoothed by [15] then the surface normals were estimated by supervoxel clustering [72].
The optimization was able to find all the optimal grasps even the initial parallel grasps were
infeasible, as shown in apple and bunny grasps of Fig. 4.6.

Table 4.1 shows the details of grasp synthesis for all ten objects. The 2-5th column shows
the number of iterations, the total number of the tangent space searching (and projections),
the total optimization time, and the number of vertices of the objects, respectively. In
average, for an object with 64K vertices, the iterative CPO-PPO ran for 4.2 outer iterations
(84.9/29.2 inner iterations for CPO and PPO, respectively) in total with 0.58 sec in order
to find an optimal precision grasp for a three-fingered hand with 8 DOFs.

The average time distribution of the optimization for ten grasps is shown in Table 4.2.
The tangent space searching (and projection) iterated for 84.9 and 29.2 times for CPO and
PPO, respectively. The projection (403.2 ms) took longer time than tangent space searching
(139.9 ms) because of the nearest neighbor computation.

Figure 4.7 shows the visualization of the iterative CPO-PPO on grasping the screwdriver.
The initial grasp generated by a parallel grasp is shown in Fig. 4.7(a). Then CPO was enabled
to solve for optimal contacts by maximizing the overall grasp quality. Due to the successive
tangent space searching and projection, the fingers behaved as sliding on the object surface,
as shown in Fig. 4.7(b)-(d). The CPO stopped when reaching the termination conditions
in Alg. 4. Then PPO was enabled, and the pose of the palm was optimized. In practice,

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 43

Doraemon: Initial Doraemon : Final

Mug: Initial Mug: Final

Hello Kitty (H): Initial Hello Kitty (H): Final

Hello Kitty: Initial Hello Kitty: Final

Oscar: Initial Oscar: Final

Bunny: Initial Bunny: Final

Bunny (R): Initial Bunny (R): Final

Srewdriver: Initial Screwdriver: Final

Polygons: Initial Polygons: Final

Apple: FinalApple: Initial

Figure 4.6: Grasp planning examples for different objects with the multi-fingered hand.

the object pose was optimized due to the relativity of motion, as shown in Fig. 4.7(e)-(g).
PPO and CPO could iterate for several times before converging or reaching the constraint
boundaries (e.g. collision or |ndes

Tnf (qdes)| ≥ γ). The corresponding video is available
in [102].

Figure 4.8 shows the quality profile of the grasp planning on the same object. The active
regions for CPO and PPO are shown by yellow and blue shaded areas, and the quality profile
is shown by red solid curve. The algorithm started from a low-quality parallel grasp and
optimized for joints, contacts and palm by running the iterative CPO-PPO algorithm. PPO
was enabled and terminated in the first iteration, since the J1 was on the joint limit and
there was insufficient joint space to improve the overall quality. The CPO was enabled from
the second iteration and the contacts were searched by optimizing the overall grasp quality.
The CPO ran for 28 iterations, after which PPO took over and optimized for object motion.
CPO and PPO iterated until convergence.

Figure 4.9 shows the measurements of the finger splitting by several commonly adopted
quality metrics. The measurements for ten grasps were resized to be the same length.
The mean and standard deviation (SD) of the measurements for ten simulated grasps are
represented by red sold lines and blue vertical bars, respectively. Figure 4.9(a) shows the

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 44

Table 4.1: Optimization Details for Grasp Generation

Objects #Iters #CPO/PPO Time (ms) #Vertices
Mug 5 90/22 1257.3 185,511
Oscar 2 69/3 719.7 148,616
Screwdriver 3 40/53 380.6 46,721
Bunny 4 106/28 465.5 43,318
Bunny(R) 4 62/44 403.7 43,318
Doraemon 6 125/12 484.0 42,551
Hello Kitty(H) 5 108/38 467.1 29,659
Hello Kitty 7 69/56 406.6 29,659
Apple 1 43/2 183.0 22,487
Polygons 5 96/21 1053.1 100
Average 4.20 84.9/29.2 582.1 63,516

Table 4.2: Average Time Distribution for Grasp Generation

Time (ms) Tangent search Projection & Test Collision Total
CPO 37.0 326.9 29.0 392.9
PPO 102.9 76.3 10.0 189.2
Total 139.9 403.2 38.9 582.1

profile of the quality metric optimized in this chapter. The average quality was increased
monotonically during the finger splitting process. Figure 4.9(b) shows the profile of the
grasp isotropy index Qiso = σmin(G)/σmax(G) [42]. Figure 4.9(c) shows the profile of the
wrench space volume metric Qvol =

�
det(GGT) [53]. Figure 4.9(d) shows the profile of

the Ferrari-Canny metric [30]. All the qualities were normalized in order to display the
trend during grasp planning of different objects. Figure 4.9(b)(c)(d) indicate that the finger
splitting solved by the iterative CPO-PPO improves grasping performance for all tested
grasp metrics.

Verification with Physical Simulations

The quality improvement of the grasp after finger splitting was verified by the Mujoco physics
engine. Given the desired palm pose and contact positions, the fingers were controlled using
the virtual frame method [38]. To simulate the nonconvex object for contact and collision,
the object was decomposed into convex shapes by v-hacd. Figure 4.10 shows the simulation
results of the initial optimal parallel grasp and the finger splitting result. The initial parallel
grasp could not lift the object successfully due to the gravitational force and acceleration
as shown in Fig. 4.10 (Top), while the optimized grasp by finger splitting was able to hold
the object steadily during lifting as shown in Fig. 4.10 (Bottom). The contact status and
magnitude of the contact force are represented by the yellow cylinder and the gray arrow,

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 45

��� ��� ��� ���

���������

���

��� ���

Figure 4.7: Snapshots of finger splitting on a screwdriver.

Figure 4.8: Quality improvement during iterative CPO-PPO on a screwdriver.

respectively.

Comparisons

The efficiency of the grasp planning by finger splitting was compared with the methods
in [50] and [37] on bunny object, as shown in Table 4.3. The object surface in method [50]
had to be fitted analytically (took 8.36 secs), after which an optimal grasp was searched
by AMPL using IPOPT solver (took 15.32 secs). The hand reachability was not considered
in the algorithm. The HFTS planner used a hierarchical representation of the object. The
preprocessing time for the representation was 0.764 sec for the object with 1002 vertices and
13.41 secs for a point cloud with 20,586 vertices. The average time for grasp planning on
Bunny object was 16.26 secs [37]. In comparison, the proposed method achieves the most
efficient computation by initializing parallel grasps with ISF in Chapter 2 (took 0.15 sec),

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 46

Figure 4.9: Normalized quality measurements including (a) the proposed quality metric. (b)
grasp isotropy, (c) wrench volume, and (d) Ferrari-Canny metrics.

Figure 4.10: Comparison of the initial optimal parallel grasp (Top) and the finger splitting
result (Bottom) in a physical simulator.

and searching for optimal grasps for multi-fingered hand by finger splitting (took 0.43 sec)1.

1It is worth noting that different methods might converge to different local optima.

CHAPTER 4. TRANSFERRING GRASPS FROM PARALLEL GRIPPERS TO
MULTI-FINGERED HANDS BY FINGER SPLITTING 47

Table 4.3: Computation Time (Seconds) for Different Methods

Methods Preprocessing Optimization Total Time
Li et. al. [50] 8.36 15.32 23.68
HFTS [37] 0.76 - 13.41 16.26 17.02 - 29.67
Proposed 0.15 0.43 0.58

4.5 Chapter Summary

This chapter proposed a finger splitting strategy for grasp planning with multi-fingered hands
by transferring the knowledge from grasp databases of parallel grippers. The splitting was
initialized by the planning result of the parallel gripper, and was optimized continuously by
a novel iterative CPO-PPO algorithm. The CPO optimizes for contact points by assuming
that the palm is static while PPO optimizes for palm pose by assuming that the contacts on
object are static. CPO and PPO were both solved by consecutive tangent space searching
and nonlinear projection. The iterative CPO-PPO algorithm was able to find a local optimal
collision-free grasp within one second in average for the objects studied in simulations.

48

Chapter 5

Optimization Model to Plan Grasps
with Multi-Fingered Hands

5.1 Introduction

Chapter 4 introduced a strategy called finger splitting to address the learning complexity and
plan grasps for multi-fingered hands. The algorithm splits fingers by alternatively optimizing
the palm pose and the contact positions starting from a parallel grasp. The algorithm is able
to converge to a local optimum efficiently. However, instead of searching for new contacts
to avoid the collision or reduce misalignment, the algorithm terminates if there is a collision
between hand and object or large misalignment between contact normal and fingertip normal.
Moreover, with fixed contacts, the palm may have less freedom to adjust if the hand is under-
actuated or has low degree of freedoms (DOFs), thus the searching range is limited to small
regions.

The objective of this chapter is to plan precision grasps with a general multi-fingered
hand and remove the dependency on initial parallel grasps. As one category of grasps with
multi-fingered hands, precision grasp has great importance in grasping the small/flat objects
or executing the high-precision in-hand manipulation tasks. In these tasks, a robotic hand
uses the fingertips to contact with the object and manipulate the object with the force/torque
produced from these contacts. With the maximum joints in the kinematic tree, the fingertips
provide enough dexterity and generate forces in different directions for object manipulation
and disturbance rejection. The realization of precision grasps, however, is challenging due
to the complex shape of the objects, high-dimensionality of the planning problem, collision
avoidance requirements during grasp searching and execution, and the robustness to various
uncertainties.

The idea of iterative contact point optimization (CPO) - palm pose optimization (PPO) in
Chapter 4 provides a sustainable way to solve the nonlinear optimization in grasp planning.
In this chapter, we further propose an optimization model to search for optimal grasps
while avoiding collision with multi-fingered hands. The optimization model formulates the

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 49

Figure 5.1: Illustration of grasp planning problem with a three-fingered hand.

planning problem into a gradient-based optimization and searches grasps from scratch. The
optimization is solved by iterating between a palm pose optimization (PPO) and a joint
position optimization (JPO). Instead of fixing contact points as Chapter 4, PPO in this
chapter searches for desired palm pose to optimize the geometrical quality metrics with fixed
finger joints. In contrast, JPO searches for desired finger joint positions to optimize both
the object quality and hand manipulability with fixed palm pose.

The contributions of this chapter are as follows. First, the planning problem is formulated
as a gradient-based optimization with a random start. Moreover, the collision is actively
penalized and avoided within the optimization instead of pruning the collided grasps after
the optimization. With the customized penalization, the iterative PPO-JPO changes the
non-convex planning problem into a sequence of least-squares, and the average computation
time is 0.5 sec/grasp. Third, the algorithm is robust to sensing uncertainties and noises by
employing contact patches rather than individual contact points. The effectiveness of the
algorithm is verified by both the simulation and the experiment. The experimental videos
are available at [102].

The remainder of this chapter is as follows. The formulation of the planning problem and
the optimization model are stated in Section 5.2. Section 5.3 presents an efficient iterative
PPO-JPO to solve the modeled optimization. Simulation and experiment are introduced in
Section 5.4. Section 5.5 summarizes the chapter.

5.2 Optimization Model for Precision Grasps

We consider the planning of precision grasps with multi-fingered hands. In the precision grasp
mode, the hand contacts with the object by fingertips to gain most dexterity and increase
the grasping manipulability. Precision grasps are necessary if the object to be grasped is flat
or requires further precision operations.

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 50

Problem Statement

An example of precision grasp with a three-fingered hand is restated in Fig. 5.1. The contacts
that connect the hand F and the object ∂O are denoted as c = [c1, ..., cNc], where Nc is the
number of contacts. Different contacts are associated by the hand configuration characterized
by the palm pose (R ∈ SO(3), t ∈ R3) and the joint angles q = [q1, ..., qNc], where qi ∈ RNjnt,i

is joint angles of the i-th finger and Njnt,i is the number of joints for this finger.
Given the object ∂O, the grasp planning is to determine the grasp G = {c, (R, t), q} to

successfully lift the object. To be more specific,

max
R,t,q,c

Q(c, q) (5.1a)

s.t. c ∈ FK(Ft;R, t, q) (5.1b)

c ∈ ∂O (5.1c)

dist(FK(F ;R, t, q), ∂O) ≥ 0 (5.1d)

qi ∈ [qmin,i, qmax,i] i = 1 · · ·Nc (5.1e)

where Q(c, q) denotes the grasp quality including the Qcom(c, ∂O), Qjc(q) and Qalign(nc, nf).
Qcom is the distance between the centroid of the contact polygon and the objects center of
mass. With minimal distance, the moment of gravitational force is reduced due to the small
moment arm. Qjc is the derivation from the center of the joints. Qalign is the misalignment
between the contact normal nc and fingertip normal nf . A large misalignment error implies
the exerted force may be outside of the friction cone.

Constraint (5.1b) is the kinematic constraint that connects the hand configuration with
the contacts, where Ft represents the fingertip surfaces and FK(Ft;R, t, q) denotes the
forward kinematics parameterized by hand configuration. Constraint (5.1c) restricts the
contacts to object surface ∂O, (5.1d) denotes that the hand surface F parameterized by
(R, t, q) should not collide with the object, and (5.1e) shows the joint limits. With the palm
pose, joints and contacts as optimization variables, forward kinematics (5.1b), complex object
surface (5.1c) and collision (5.1d) as constraints, Problem (5.1) becomes a high-dimensional
non-convex programming.

Optimization Model Structure

The structure of the proposed grasp planning algorithm is shown in Fig. 5.2. It contains
two loops. the inner loop iterates the palm pose optimization (PPO) and the joint position
optimization (JPO) and is called the iterative PPO-JPO. The outer loop samples hand
configuration and restarts the iterative PPO-JPO. The PPO algorithm fixes joints, q = q0,
and searches for the palm pose (R, t) by optimizing the grasp quality Qcom(c(R, t, q0), ∂O)+
Qalign(nc, nf) while minimizing the collision with the object and the ground. The JPO
algorithm fixes the palm pose (R, t) = (R0, t0) while searches for the joints q by optimizing
theQcom(c(R0, t0, q), ∂O)+Qjc(q)+Qalign(nc, nf) and minimizing the collision. The iterative
PPO-JPO finds a local optimum of the optimization (5.1).

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 51

Figure 5.2: Structure of the iterative PPO-JPO.

The guided sampling in the outer loop is introduced from Chapter 2 to avoid the iterative
PPO-JPO being trapped in poor-performed local optima. It employs the K-means clustering
of the object surface and places the hand onto the cluster centers. The success rate of locating
a high-quality collision-free grasp is different due to the varying local geometries. The guided
sampling ranks different clustering centers based on the success rate and the center with
higher success rate will be sampled more often. The details of the guided sampling are
neglected in this chapter for simplicity.

5.3 Iterative PPO-JPO for Precision Grasp Planning

Constraint Relaxation

Optimization (5.1) is an abstract formulation of the grasp planning problem. We relax some
of the constraints to locate the grasps smoothly in the space occupied by the object, including
the surface constraint (5.1c) and the collision constraint (5.1d). More specifically,

max
R,t,q,c

Q(c, q)− w(Ecol(R, t, q) + Ecls(c, FK(Ft;R, t, q))) (5.2a)

s.t. c = NN∂O(FK(Ft;R, t, q)) (5.2b)

qi ∈ [qmin,i, qmax,i] i = 1 · · ·Nf (5.2c)

where NN(•)∂O in (5.2b) denotes the nearest neighbor of • on object surface. Ecol(R, t, q)
corresponds to (5.1d) and penalizes the collision violation. Ecls(c, FK(Ft;R, t, q)) and the
constraint (5.2b) together correspond to (5.1b,5.1c) and penalize the distance between the
contact and the fingertip, and w is an increasing penalty weight for constraint violation.

Optimization (5.2) is a relaxed formulation of (5.1) to reduce the nonlinearities introduced
by (5.1b) and (5.1d). Despite the relaxation, the direct optimization of R ∈ SO(3), t, q is
challenging in the following aspects: 1) the palm orientation is constrained in special orthog-
onal group SO(3), 2) R, t, q are searched based on the quality determined by FK(R, t, q)
and contacts in complex ∂O, and 3) Ft is in surface form and is hard to optimize by gradient-
based methods.

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 52

Incremental Search and Point Representation

To enable the gradient-based search on the object space, we instead search incrementally
on δR, δt, δq, where δR, δt denote the transformation of palm and δq denotes the joint
displacement. The problem is further simplified by sampling the current hand surface F
into points {pk, np

k}
Np

k=1, where pk ∈ R3, np
k ∈ S2 denote the k-th points and normals on

hand surface pointing outwards. Similarly, the object surface ∂O is sampled into points
{ok, no

k}No
k=1. We retrieve all those {pk}pk∈Ft within Ft and then search the nearest neighbor

on the object surface NN∂O({pk}pk∈F i
t
) to find corresponding points {ok}ok∈Ii , where F i

t is
the hand surface of the i-th finger. The mean values of {pk}pk∈F i

t
and {ok}ok∈Ii are denoted as

pfi and ci. The contact points on hand and object are pf =
�
pf1 , ..., pfNc

�
and c = [c1, ..., cNc].

With the point representation, Qcom(c, ∂O) becomes:

Qcom(c, ∂O) = −
Nc�

i=1

((p̄fi − pcom)
Tn⊥)

2,

where p̄fi = δRpfi+δt+δRJv
fi
(qi)δqi is the fingertip position for finger i after transformation,

Jv
fi

∈ R3×Njnt,i is the translational Jacobian matrix at qi with Njnt,i denoting the number
of joints in the i-th finger, pcom is the object center point, and n⊥ is the normal vector of
the polygon formed by fingertips. Fingertip positions are used to replace the contacts to
avoid searching on object surface. This replacement is reasonable under the assumption
that c ≈ pf .

The quality Qjc(q) becomes:

Qjc(q) = −
Nc�

i=1

Njnt,i�

j=1

(αj
i

qji − q̄ji
qjmax,i − qjmin,i

)2,

where q̄ji , q
j
max,i, q

j
min,i are the mean and limit values of the j-th joint in the i-th finger. αj

i is
the weights for the j-th joint of the i-th finger.

Quality Qalign(nc, nf) becomes:

Qalign(nc, nf) = −β2

Nc�

i=1

(nci · δRe(J
w
i δqi)ˆnfi + 1)2,

where nci , nfi are the normals of the i-th contact and fingertips, respectively, and Jw
i ∈

R3×Njnt,i is the rotational Jacobian matrix for finger i. β is the scaling factor of Qalign.
The formulation of collision penalty Ecol is approximated in this chapter to accelerate the

computation (Fig. 5.3), though a rigorous formulation can be found in [84]. Figure 5.3(ab)
show hand-object collision. Collided points are obtained by transforming object points to
bounding boxes of fingers and check the inclusion of object points in bounding boxes. Col-
lision types are determined by the sign of

np
l · ol. The inner side contact and outer side

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 53

Figure 5.3: Illustration of collision detection.

contact are shown in Fig. 5.3(ab). For outer side contact, pl is replaced by purple points.
With the approximation shown in Fig. 5.3, collision penalty Ecol becomes:

Ecol =

Ncol�

l=1

�p̄l − ol�2 +
Ncol,g�

l=1

((p̄l − og)
Tng)

2,

where Ncol, Ncol,g are numbers of collided points with the object and ground, respectively.
p̄l = δRpl + δt+ δRJ v

l (q)δq, where J v
l ∈ R3×Njnt denoting the translational hand Jacobian

matrix, og ∈ R3, ng ∈ S2 are sampled points and normal of the ground.

The penalty Ecls is

Nc

i=1(p̄fi − ci)
Tnci .

Problem (5.2) with the incremental search and point representation becomes:

min
δR,δt,δq

−Qcom −Qjc −Qalign + w(Ecol + Ecls) (5.3a)

s.t. qi ∈ [qmin,i, qmax,i] i = 1 · · ·Nf (5.3b)

Problem (5.3) remains a nonlinear programming due to the coupling between δR and
q. We solve it with the iterative PPO-JPO algorithm. The details of PPO and JPO are
described below.

Palm Pose Optimization (PPO)

The PPO algorithm optimizes for δR, δt by fixing the finger joints (i.e. δq = 0). To search
on the trivial Euclidean space, the hand rotation δR is parameterized by the axis-angle
representation and approximated by δR ≈ I3×3 + r̂, where •̂ is the matrix representation of
cross product and r ∈ R3 is the angle-axis vector.

With the fixed joint and approximation of rotation, (5.3) becomes a least-squares prob-
lem:

min
x

�Ax− b�22 (5.4)

where x = [rT , δtT]T ∈ R6. A = [aTcom,i...a
T
align,i...a

T
col,l...a

T
cls,i]

T ∈ R(3Nc+3|Lo|+|Lg |)×6, with Lo

denoting the indexes of hand-object collision and Lg denoting the indexes of hand-ground
collision. acom,i = [(pfi × n⊥)T , nT

⊥], aalign,i = β[(nfi × nci)
T , 0T3], acol,l includes hand-object

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 54

collision aobj,l = w[−p̂l, I3] and hand-ground collision agnd,l = w[(pl×ng)
T , (ng)

T], and acls,i =
w[(pfi × nci)

T , nT
ci
].

Similarly, b = [bcom,i...balign,i...bcol,l...bcls,i]
T , bcom,i = nT

⊥(pcom − pfi), balign,i = −β(nT
fi
nci +

1), bcol,l includes bobj,l = w(pl − ol) and bgnd,l = w(pl − og)
Tng, and bcls,i = w(ci − pfi)

Tnci .
The PPO (5.4) is a least-squares problem and can be solved analytically by

x∗ = (ATA)−1AT b.

The optimal palm transformation is δR = e(x
∗
1:3)ˆ, δt = x∗

4:6. We update the hand configura-
tion by (R, t) ← (δR, δt) ∗ (R, t) and start JPO.

Joint Position Optimization (JPO)

The JPO algorithm optimizes for δq by fixing the palm pose. With the fixed palm pose,
JPO becomes a least-squares with constraint problem:

min
δq

�Cδq − d�22 (5.5a)

s.t. δq + q ∈ [qmin, qmax], (5.5b)

where C = [CT
com...C

T
jc...C

T
align...c

T
col,l...C

T
cls]

T ∈ R(3Nc+Njnt+3|Lo|+|Lg |)×Njnt , Ccom = diag(nT
⊥J

v
i),

Cjc = diag(αj
i/(q

j
max,i − qjmin,i)), Calign = diag(nT

ci
nfiˆJ

w
i), ccol,l includes hand-object colli-

sion cobj,l = wJl(q) and hand-ground collision cgnd,l = (ng)
TJl(q), and Ccls = wdiag(nT

ci
Jv
i).

Similarly, d = [dcom,i...djc,i...dalign,i...dcol,l...dcls,i]
T ∈ R3Nc+Njnt+3|Lo|+|Lg |, with dcom,i = (pcom−

pfi)
Tn⊥, djc,i = αj

i (q̄
j
i − qji)/(q

j
max,i − qjmin,i), dalign = −(nT

ci
nfi + 1), dcol,l includes dobj,l =

w(pl − ol) and dgnd,l = w(pl − og)
Tng, and dcls,i = (ci − pfi)

Tnci .
Problem (5.5) is a least-squares with box constraints and can be solved by either a solver

or by initializing δq0 = (CTC)−1CTd and iterating between

δqm̄ = δqm − γCT (Cδqm − d) (5.6a)

δqm+1 = max(min(δqm̄, qmax − q), qmin − q) (5.6b)

Iterative PPO-JPO Summary

The Iterative PPO-JPO algorithm is summarized in Alg. (7). The algorithm is fed with the
sampled hand configuration from guided sampling and the hand/object geometries (Line 1).
In each iteration, we first search the contacts by the forward kinematics and nearest neighbor
(Line 4), and run the PPO algorithm to optimize for hand pose (Line 5-6). The contacts
are refreshed accordingly and fed into the JPO algorithm for optimized δq∗ (Line 7-8). The
iteration terminates after Tmax iterations.

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 55

Algorithm 7 Iterative PPO-JPO Algorithm

1: Input: Initial Rs, ts, δqs, ∂O, F , Tmax

2: Init: (R, t, q) ← (Rs, ts, δqs)
3: for t = 0, · · · , Tmax do
4: (c,pf) ← update(FK(F , R, t, q), ∂O)
5: δR∗, δt∗ ← PPO(c,pf)
6: (R, t) ← (δR∗, δt∗) ∗ (R, t)
7: (c,pf) ← update(FK(F , R, t, q), ∂O)
8: δq∗ ← JPO(c,pf)
9: q ← q + δq∗

10: end for
11: return {R, t, q}

5.4 Simulations and Experiments

This section shows the simulation and experiment results. The simulation ran on a desktop
with 32GB RAM and 4.0GHz CPU. The computation was conducted in Matlab and visu-
alized in VREP. For the experiment, we used a BarrettHand BH8-282 multi-fingered hand
attached to a FANUC LRMate 200iD/7L industrial manipulator for grasping. Two Ensenso
N35 cameras were used to capture the point cloud of the scene.

Parameter Lists

The hand surface was discretized into 1798 points and each fingertip had 216 points sampled.
The scaling factor α1:3

1:2 = 1 and α1:2
3 =

√
2 in Qjc to balance the gradients in different sides

of the hand. The scaling factor β = 0.03 in Qalign. The collision penalty w was initialized
as 1.0 and increased exponentially with factor 1.1. The maximum iteration Tmax = 40.

Simulation Results

Figure 5.4 shows 5 out of 7 collision-free grasps found with 10 samples in simulation using
the proposed iterative PPO-JPO method. The object to be grasped was a robot model with
a complex shape. The proposed algorithm was able to find the versatile grasps without
colliding with the object and the ground. The majority of the grasps found were precision
grasps with fingertip contacts.

Figure 5.5 shows the animation of a grasp search on the robot object. The iterative
PPO-JPO started searching from a vertical grasp with fully opened hand (Fig. 5.5(a)) and
gradually adjusted the palm pose/joints angles to maximize the quality and avoid the colli-
sion, as shown in Fig. 5.5(b-h).

The grasp results on 12 different objects are shown in Figure 5.6. The iterative PPO-
JPO was able to find collision-free precision grasps for a) thin objects close to the ground

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 56

Figure 5.4: Visualization of 5 out of 7 grasps found on Robot object.

Figure 5.5: Simulation result of the iterative PPO-JPO on Robot object.

(Fig. 5.6(1,5)), b) objects with complex surfaces (Fig. 5.6(2,6,9,12)), or c) the objects with
sharp edges (Fig. 5.6(3,7,12)).

The numerical results of the iterative PPO-JPO on these objects are shown in Table 5.1.
Among the 12 different objects, the iPhone X, Gun, Hand and Mouse are among the most
challenging objects to grasp. The proposed algorithm was not sensitive to object complex
surfaces but rather suffered from the low-height properties of the objects due to the collisions
caused by the narrow space between the feasible grasp region and the ground.

In average, the iterative PPO-JPO were able to find 6.58 collision-free grasps out of 10
samples within 3.26 secs (0.496 sec/grasp).

Figure 5.7 shows the error reduction profile running the iterative PPO-JPO algirthm
on Bunny object. The algorithm ran for 50 trials, and generated 46 collision-free grasps.
We recorded the negative quality Equality = −Qcom − Qjc − Qalig and the penalty error
Epenalty = Ecol +Ecls. In average, the grasp quality Equality reduced from 1.36± 0.0036 m to

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 57

Figure 5.6: Simulation results of iterative PPO-JPO on 12 different objects.

0.29 ± 0.093 m (Fig. 5.7(Middle)), and the penalty error Epenalty reduced from 0.31 ± 0.27
m to 0.031 ± 0.0050 m (Fig. 5.7(Right)). The red (purple) and blue (yellow) plots show
the mean and standard deviation for all (collision-free) grasps. The total error Eoverall =
Equality + Epenalty Fig. 5.7(Left).

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 58

Table 5.1: Numerical Results of the iterative PPO-JPO

ID Object
collision-free#
total samples

Time (s)

1 iPhone X 5/10 2.48
2 Motorbike 6/10 3.72
3 Hairdryer 10/10 3.44
4 Shoe 6/10 3.45
5 Gun 4/10 2.89
6 Diving helmet 9/10 3.85
7 Bunny 8/10 3.15
8 Oscar 8/10 3.60
9 Catcam 7/10 3.67
10 Hand 5/10 3.15
11 Mouse 4/10 2.48
12 Robot 7/10 3.27

1-12 Average 6.58/10 3.263

Figure 5.7: Error profiles of iterative PPO-JPO on Bunny object running 50 samples.

Experiment Results

This section shows the experimental results with the BarrettHand BH8-282. The whole
experiment could be separated into two phases: 1) the grasp planning by iterative PPO-
JPO, and 2) the object clamping by simply continuing finger motion for certain time until
the tactile sensor reading reaching the target value (1.0N/cm2). The focus of this chapter is
the grasp planning using the proposed iterative PPO-JPO algorithm.

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 59

Figure 5.8 shows the experimental setup (Fig. 5.8(1)), the grasp planning and execution
results (Fig. 5.8(2-18)) on 15 different objects. The perceived point cloud and the located
grasp are shown on the left side of each subfigure. The physical grasp pose and the execution
result of the planned grasp are shown in the middle and right, respectively.

To address the noise and incompleteness of the perceived point cloud, the contact points
were regarded as a region close to the fingertip, instead of a single point. Therefore, the
system exhibits certain robustness to the noise and incompleteness of the object point cloud,
as shown in Fig. 5.8(2-14).

While the algorithm shows certain robustness to noise and incompleteness of the point
cloud, the resistance to uncertainties remains a challenge. These uncertainties were 1) posi-
tioning uncertainties including calibration error (∼ 3 mm for robot-camera frame alignment),
installation error (∼ 1◦ TCP-palm alignment), actuation error (∼ 2.0◦ finger joint tracking
error), 2) communication uncertainties including synchronization error (∼ 0.1 sec ROS-
Matlab transmission misalignment), non-real time error (∼ 0.1 sec ROS latency on different
fingers), and dynamics uncertainties including the mass uncertainties, friction uncertainties
and softness uncertainties.

Figure 5.8(15-18) shows four failure cases caused by these uncertainties. More specifically,
Figure 5.8(15) was failed from the unsynchronized contacts of different fingers. The finger
which contacted with the object first would keep pushing the object, introducing extra
disturbance and perturbing the object. Consequently, the hand contacted with the object
on undesired positions and caused the object slipped. Figure 5.8(16) slipped off since the
object was heavy and two fingers contacted with soft parts of the object (plug and wire).
However, the quality metric cannot take these factors into account. Similar failure appears
in Fig. 5.8(17,18).

5.5 Chapter Summary

This chapter proposed an efficient optimization model for precision grasp planning. To
optimize the quality and avoid the collision, the planning problem was formulated into an
optimization with penalties and solved by iterating between the palm pose optimization
(PPO) and joint position optimization (JPO). The iterative PPO-JPO algorithm was able
to locate a collision-free grasp within 0.50 sec (based on 120 grasps on 12 objects in different
categories). Experiments on a BarrettHand BH8-282 further demonstrated the effectiveness
of the algorithm. The experimental videos are available at [102].

CHAPTER 5. OPTIMIZATION MODEL TO PLAN GRASPS WITH
MULTI-FINGERED HANDS 60

Figure 5.8: (1) Experimental setup and (2-18) planning and execution results on 15 objects.

61

Chapter 6

Efficient Framework for General
Robotic Grasping

6.1 Introduction

Chapter 5 introduced an optimization model to plan precision grasps for multi-fingered
hands. In this chapter, we further improve the versatility of the produced grasps and the
robustness of the optimization model to imperfect sensing, calibration and actuation. In
Chapter 2, the robustness to sensing and actuation uncertainties is improved by fitting the
contact surface between the customized grippers and workpieces to generate powerful, ro-
bust grasps. The surface fitting produces grasps with larger contact surfaces and provides
force/torque from various positions, thus the resultant wrench space can resist larger distur-
bances. However, the previous surface fitting has several limitations. First, it can only handle
the grippers with one degree of freedom (DOF). Secondly, the grasps with collisions were
detected and pruned after the optimization. The optimize-then-prune operation produced
sub-optimal grasps.

Besides planning the desired grasp configurations, the robot should generate proper robot-
finger trajectories to execute the grasps. The trajectory planning can be extremely expensive
in this high dimensional space. Majority of the current grasp planning methods ignore pos-
sible collisions during the execution and simply close the fingers to execute the grasps [99,
83, 88, 86]. A method based on rapidly-exploring random tree (RRT) was introduced in [98]
to plan motion and grasp simultaneously. With the manually designed heuristics, the RRT
dimension was reduced to three. These heuristics defined a potentially narrow and subop-
timal subspace for RRT search. A general trajectory optimization (TrajOpt) algorithm was
presented in [84] using the sequential quadratic programming (SQP) [7]. Both the RRT and
TrajOpt require object mesh model during the optimization, which is generally absent in the
online grasp planning scenario.

In this chapter, we combine the surface fitting in Chapter 2 and the optimization model
in Chapter 5, and propose a general framework for efficient robot grasping with different

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 62

types of grippers. The framework includes both the grasp planning and grasp imagination.
With the consideration of surface fitting, the grasp planning searches for optimal grasps by
deforming the hand surfaces along its feasible kinematic directions and matching towards
the surface of the workpieces, given the assumption that the large matching area produces
more stable and powerful grasp. The grasp planning is able to handle the hands with multi-
DOFs. With the planned grasp configurations, we further propose a grasp imagination
method to optimize the robot-finger trajectories to reach the target grasps given the point
cloud representation of the objects.

The contributions of this chapter are as follows. First, the grasp planning is able to
find grasps with plausible surface fitting performance efficiently. The average optimization
time is 0.40 sec/grasp using the raw point cloud captured by stereo cameras. By optimizing
the palm pose and finger joints iteratively, the planning algorithm is able to implement on
the hands with multiple DOFs. Secondly, the collision is penalized by the gradient-based
methods directly, instead of being pruned after the optimization as [20, 38]. Furthermore, the
proposed method can generate both the power grasps and precision grasps by adjusting the
fitting weights of fingertips. Finally, the proposed grasp imagination is able to plan collision-
free finger trajectories in 0.61 sec/grasp with the imperfect point cloud and underlying
uncertainties.

The remainder of the chapter is as follows. Section 6.2 describes the problem formulation,
followed by the proposed grasping framework in Section 6.3. The experimental results on
a multi-fingered hand are introduced in Section 6.4. Section 6.5 concludes the chapter and
describes the future work. The experimental videos are available at [102].

6.2 General Optimization Model for Grasping

With the surface contact, the grasp planning for a multi-fingered hand problem can be
formulated as:

max
R,t,δq,Sf ,So

Q(Sf ,So) (6.1a)

s.t. Sf ⊂ T (∂F ;R, t, δq), (6.1b)

So = NN∂O(Sf), (6.1c)

dist(T (∂F ;R, t, δq), ∂O|G) ≥ 0 (6.1d)

q0 + δq ∈ [qmin, qmax], (6.1e)

where R ∈ SO(3), t ∈ R3 denote the rotation and translation of the hand palm, q ∈ RNjnt

denotes the joint angle, with Njnt representing the number of joints, and q0 and δq represent

the original and displacement of q. Sf = [Sf
1 , ...,Sf

Ncnt
],So = [So

1 , ...,So
Ncnt

] are contact

surfaces for all fingers/palms and objects, with Sf
i and So

i representing the i-th contact
surface on the finger/palm and object, and Ncnt denoting the number of contact surfaces.
Q ∈ R represents the grasp quality related to Sf ,So. Constraints (6.1b) shows that Sf is a

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 63

Figure 6.1: Illustration of the general grasping framework.

subset of the surface transformed from the hand surface ∂F by (R, t, δq). Constraint (6.1c)
denotes So is computed from the nearest neighbor (NN) of Sf on object surface ∂O.
Constraint (6.1d) denotes that the transformed hand surface ∂F should not collide with the
object ∂O and ground G, and (6.1e) indicates that q stays in [qmin, qmax].

Problem (6.1) would be a standard grasp planning problem if all contact surfaces were
degenerated into contact points. In general case, however, the problem is challenging to solve
by either the sampling based methods or gradient based methods considering the inverse
kinematics (IK) and collision detection with the objects of complex shapes.

We observe that human tends to match the contact surfaces during grasping in order
to increase the force exerted on the object and improve the robustness to uncertainties.
Therefore, the grasp quality Q is chosen as the surface fitting error between the hand contact
surface Sf and object contact surface So. More concretely,

Q(Sf ,So) = −dist(Sf ,So). (6.2)

Based on this quality formulation, this chapter introduces a framework to plan and
execute the grasps. The technical details are explained in the following sections.

6.3 Grasp Planning and Imagination by MDISF-GTO

Framework Architecture

Figure 6.1 introduces the architecture of the grasping framework. It consists of three main
blocks: grasp planning by a multi-dimensional iterative surface fitting (MDISF), the grasp
imagination and execution by a grasp trajectory optimization (GTO), and an optional
learning-based grasp explorer by a region-based convolutional neural network (R-CNN).

Starting with an initial configuration, MDISF optimizes the palm transformation (R, t)
and joint displacements δq by minimizing the surface fitting error between the hand and
object. The optimization actively avoids the collision between the hand and the object
as well as the surrounding environment, and is able to deform in feasible hand directions.
Compared with the ISF algorithm in Chapter 2, MDISF is collision-aware and can plan grasps
for the hands with multiple DOFs. Compared with the optimization model in Chapter 5,

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 64

Figure 6.2: Illustration of the multi-dimensional iterative surface fitting (MDISF) algorithm.

MDISF in this chapter increase the contact surface to improve the robustness to sensing and
positioning uncertainties. Guided sampling is introduced to avoid trapped in bad-performed
local optima by prioritizing different initial configurations, so that the regions with better
performance are sampled more often. The introduction of guided sampling is in Chapter 2
and the detailed introduction is neglected in this chapter.

Grasp imagination is to evaluate the planned grasps robustly and generate robot-finger
trajectories to approach the highly ranked grasps. The GTO algorithm is proposed to avoid
collision with the environment and plan optimal finger trajectories using the incomplete
point cloud under various types of uncertainties.

With the capacity to grasp objects in clutter environments, we also introduce a learning-
based grasp explorer to accelerate the initialization of grasp planning. The grasp explorer
learns from previous grasp experience on the grasp affordance and collision avoidance. The
technical details have been introduced in Chapter 3 and are ignored here for brevity.

Multi-Dimensional Iterative Surface Fitting

With the surface fitting score (6.2) as the quality, Problem (6.1) can be solved with the
proposed multi-dimensional iterative surface fitting (MDISF) algorithm. Similar to iterative
closest point (ICP) [5], MDISF iterates between the correspondence matching (Fig. 6.2(a))
and surface fitting (Fig. 6.2(b)). To employ the gradient in improving the searching efficiency,

the hand surface ∂F is discretized into points {pi, np
i }

Np

i=1 and bounding boxes {Bk}Nb
k=1,

where pi ∈ R3, np
i ∈ S2 represent the point position and normal vector pointing outward,

and Np, Nb are the total number of hand surface points and boxes to cover the surface, as
shown in Fig. 6.2(a). Only the front surface is sampled for simplification. Similarly, the

object surface ∂O is discretized into points {qi, nq
i}

Nq

i=1, where qi ∈ R3, nq
i ∈ S2 represent the

point position and normal vector pointing outward, and Nq is the total number of points on
the object point cloud.

The correspondence matching finds the paired points {qi ∈ R3, nq
i ∈ S2}i∈I on object

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 65

point cloud by the nearest neighbor search with duplicate/outlier removal [108]. The surface
fitting minimizes the distance between the point pairs {pi, np

i }i∈I and {qi, nq
i}i∈I , as shown

in Fig. 6.2(b). With the point representation of the surfaces, the surface fitting error Efit is
re-formulated as

Efit(R, t, δq) =
�

i∈I

�
(p̄i − qi)

Tnq
i

�2
+ α2((Re(J

w
i δq)ˆnp

i) · nq
i + 1)2 (6.3)

where p̄i = Rpi + t+RJ v
i (q)δq describes the hand surface point after the palm transforma-

tion and finger displacement, and J v
i (q),J w

i (q) are translational and rotational Jacobian
matrices at the point pi with the joint q. The first term describes the point distance pro-
jected to the object surface normal direction. This point-to-plane distance is broadly used in
ICP [82] to allow sliding on flat surface, so that the algorithm is not sensitive to incomplete
point cloud. The second term describes the alignment of the normal vectors. α is to balance
the scale of normal alignment.

With the current correspondence matching and fitting error representation in (6.3), Prob-
lem (6.1) becomes:

min
R,t,δq

Efit(R, t, δq) (6.4a)

s.t. dist
�
T ({Bk}Nb

k=1;R, t, δq), ∂O
�
≥ 0, (6.4b)

dist (T (∂F ;R, t, δq),G) ≥ 0, (6.4c)

δq + q0 ∈ [qmin, qmax], (6.4d)

where (6.4b) represents the collision between the object ∂O and the bounding boxes of the
hand {Bk}Nb

k=1, and (6.4c) denotes the collision between the hand surface and the ground.
Equation (6.4) is a non-convex programming due to the coupling term RJ v

i (q)δq in (6.4a)
and the collision constraints (6.4b, 6.4c).

Collision Handling

The collision avoidance has been introduced in Chapter 5, we restate here for clarity. To
address the collision term, we employ the point representation of the object {qi, nq

i}
Nq

i=1 and
check the inclusion of the points in {Bk}Nb

k=1. As for the hand-ground collision, we represent
the ground by a point on ground qg and normal vector ng, and check the ground collision
by the sign of (pi − qg)

Tng. Penalty method [60] is introduced to avoid collision and ensure
that the hand can move smoothly in the space occupied by the object. More concretely, the
collision error is formulated as:

Ecol(R, t, δq) =
�

l∈Lo

�p̄l − ql�22 +
�

l∈Lg

�
(p̄l − qg)

Tng

�2
(6.5)

where {ql}l∈Lo denotes the object points that are in collision with the bounding boxes.
{pl}l∈Lo denotes the corresponding points on the box front or back surfaces, and p̄l = Rpl +

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 66

Figure 6.3: Illustration of different collision types.

t+RJ v
l (q)δq. To ensure that (6.5) reduces all types of collisions, we choose the front or the

back surfaces that ql paired with, as shown in Fig. 6.3. Figure 6.3(ac) show the inner side
collision while Fig. 6.3(bd) show the outer side collision. The algorithm first searches the
correspondence pair {pl, ql}l∈L, as shown by red and blue points. The sign of

l∈L n

p
l · nq

l

is used for detect the collision type, and

l∈L n
p
l · nq

l ≤ 0 means inner side contact. For
the outer side contact, pl is replaced by the points on the back, as shown by purple dots in
Fig. 6.3(bd).

With the penalty method, the surface fitting (6.4) becomes

min
R,t,δq

E(R, t, δq) (6.6a)

s.t. δq + q0 ∈ [qmin, qmax], (6.6b)

where E(R, t, δq) = Efit(R, t, δq) + w2Ecol(R, t, δq) represents the overall error during the
surface fitting of the current correspondence. w denotes the penalty weight of the collision.

Iterative Palm Finger Optimization (IPFO)

Problem (6.6) is a discretization of (6.1) under the current correspondence and collision
penalty, and is solved by the iterative palm finger optimization (IPFO) revised from [20].
The IPFO algorithm iteratively optimizes the palm transformation (R, t) and the finger
displacements δq.

Palm Optimization The palm optimization searches for optimal (R, t) by fixing the finger
joint configuration:

min
R,t

E(R, t, 0) = min
x

�Ax− b�2 (6.7)

where x = [rT , tT]T ∈ R6 is a local parameterization of the palm transformation, and
r ∈ R3 is the axis-angle vector to approximate R in small rotation angle assumption, i.e.
R ≈ I + r̂, where •̂ is a skew-symmetric representation of cross product. The matrix
A = [aTp,i...a

T
n,i...a

T
col,l]

T ∈ R(2|I|+3|Lo|+|Lg |)×6, with ap,i = [(pi × nq
i)

T , (nq
i)

T] as the point-to-
plane fitting error, and an,i = α[(np

i × nq
i)

T , 0T3] as the normal alignment error. acol,l includes

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 67

hand-object collision aobj,l = w[−p̂l, I3] and hand-ground collision agnd,l = w[(pl×ng)
T , (ng)

T].
Similarly, b = −[bTp,i...b

T
n,i...b

T
col,l]

T ∈ R2|I|+3|Lo|+|Lg |, with bp,i = (pi − qi)
Tnq

i and bn,i =
α((np

i)
Tnq

i + 1). bcol,l includes bobj,l = w(pl − ql) and bgnd,l = w(pl − qg)
Tng.

Equation (6.7) is a least squares problem and is solved analytically by:

x∗ = (ATA)−1AT b (6.8)

Finger Optimization The finger optimization fixes the palm transformation (R∗, t∗) and
searches for optimal finger displacements δq:

min
δq

E(R∗, t∗, δq) = min
δq

�Cδq − d�2 (6.9a)

s.t. δq + q ∈ [qmin, qmax], (6.9b)

where C = [cTp,i...c
T
n,i...c

T
col,l]

T ∈ R(2|I|+3|Lo|+|Lg |)×Njnt , with cp,i = (nq
i)

TJ v
i (q) as the point-to-

plane fitting error, cn,i = α(np
i × nq

i)
TJ w

i as the normal alignment error, ccol,l includes hand-
object collision cobj,l = wR∗J v

l (q) and hand-ground collision cgnd,l = (ng)
TJ v

l (q). Similarly,
d = −[dTp,i...d

T
n,i...d

T
col,l]

T ∈ R2|I|+3|Lo|+|Lg |, with dp,i = R∗pi + t∗ − qi and dn,i = α(np
i · nq

i + 1).
dcol,l includes dobj,l = w(R∗pl + t∗ − ql) and dgnd,l = R∗pl + t∗ − qg. Equation (6.9) is a least-
squares with box constraints, and is solved by initializing δq0 = (CTC)−1CTd and iterating
between

δqm̄ = δqm − γCT (Cδqm − d) (6.10a)

δqm+1 = max(min(δqm̄, qmax − q), qmin − q) (6.10b)

until converge, where γ is the step size for gradient decent and is set as 0.1Njnt/trace(C
TC).

Equation (6.10) is able to converge around 10 ∼ 50 iterations1.
IPFO is summarized in Alg. (8). The Alg. (8) feeds as inputs ∂F represented by

{pi, np
i }

Np

i=1, ∂O represented by {qi, nq
i}

Nq

i=1, the surface fitting indices I and collision avoidance
indices L. The corresponding points for fitting and collision are then sampled in Line (4-5).
The palm optimization and finger optimization are shown in Line (6-7). The hand surface
and hand configuration are updated in Line (8-9). IPFO terminates once the error reduction
is less than threshold Δ, as shown in Line (10-13). IPFO returns the optimal transformation
R, t, finger displacement δq and the updated hand surface ∂F .

Theorem 1 The IPFO algorithm in Alg. (8) converges to a local optimum of Problem (6.6).
proof: The convergence of IPFO is proved based on the global convergence theorem [60].

First, The R, t, δq ∈ D = SE(3)× RNjnt is a compact set. Second, the function E(R, t, δq)
in (6.6) is a continuous function. With the construction of IPFO in Line (6-7) of Alg. (8), we
claim that the function E(R, t, δq) is decent since E(R∗, t∗, δq∗) < E(R, t, δq) when outside

1Due to the simple form of the constraints, the iteration is more efficient than calling a general constrained
least squares solver.

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 68

Algorithm 8 Iterative Palm-Finger Optimization (IPFO)

1: Input: ∂F , ∂O, I,L
2: Init: (R, t) ← (I, 0), δq = 0, eprev = ∞
3: for t = 0 : Tmax do
4: {pi, np

i ,J v
i }i∈I , {qi, nq

i}i∈I ← sample(∂F , ∂O, I)
5: {pl, ql}l∈L ← sample collision(∂F , ∂O,L)
6: {R∗, t∗} ← minR,t E(R, t, 0) by (6.8)
7: (δq∗, e) ← minδq E(R∗, t∗, δq) by (6.10)
8: ∂F ← T (∂F ;R∗, t∗, δq∗)
9: δq ← δq + δq∗, (R, t) ← (R∗, t∗) ∗ (R, t)
10: if eprev − e < Δ then
11: (R, t, δq, e) ← (Rprev, tprev, δqprev, eprev)
12: break
13: end if
14: (Rprev, tprev, δqprev, eprev) ← (R, t, δq, e)
15: end for
16: return {R, t, δq,∂F , e}

of the solution set. Lastly, the IPFO algorithm composited by the palm optimization PO
(Line 6) and finger optimization FO (Line 7) is a closed mapping, since PO is continuous
and point-to-point, and FO is closed in PO(R, t, δq). Therefore, IPFO described by Alg. (8)
converges to a local optimum under the current correspondence. [End of Proof]

Fitting Weights Reshaping

The current MDISF algorithm assumes that all points have equivalent importance. With
this assumption, MDISF may 1) produce unsatisfying power grasps which either prevent the
hand from closing fingers if it matches to the region close to hinge, or 2) easily collide with the
ground if the object is flat. To generate natural power grasps, we shape the weights of points
on different regions of the hand surface with Gaussian, as shown in Fig. 6.4(a). With this
shaping, the central regions of palms and links are emphasized since these regions have better
robustness to uncertainties and allow large-scale joint motion. To produce precision grasps
for flat objects, we emphasize the fitting of points on fingertips, as shown in Fig. 6.4(b). The
surface fitting with weight shaping is similar the original one and can be solved by IPFO.
The details are neglected for simplicity.

With the IPFO algorithm in Alg. (8), MDISF searches optimal hand configuration hier-
archically using the multi-resolution pyramid, as shown in Alg. (9). MDISF iterates between
matching the correspondence (Line 6-7) and searching for optimal transformation and finger
displacements R, t, δq with IPFO (Line 8).

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 69

Figure 6.4: Weights shaping for (a) power grasp and (b) precision grasp generation.

Algorithm 9 Multi-Dimensional Iterative Surface Fitting

1: Input: Initial Rs, ts, δqs, ∂O, ∂F , L, I0, �0
2: Init: ∂F = T (∂F ;Rs, ts, δqs)
3: for l = L− 1, · · · , 0 do
4: Il = I0/2

l, �l = 2l�0, eprev ← ∞, η ← 0, it ← 0
5: while η /∈ [1− �l, 1 + �l] and it++ < Il do
6: I ← filter(NN∂O(downsample(∂F , 2l)))
7: L ← collisioncheck(∂F , ∂O)
8: {R, t, δq,∂F , e} ← IPFO(∂F , ∂O, I,L)
9: η ← e/eprev, eprev ← e, Confs ← {R, t, δq}
10: end while
11: end for
12: return {e,∂F ,Confs}

Additional Regulation Terms

In this section, we introduce two additional grasp regulation terms to specify the character-
istics of desired grasps. First, to produce a feasible grasp that satisfy the manipulability of
the manipulator, we may regulate the orientation of the palm. Second, to avoid excessive
large diameter grasps, we may regulate the volume of the desired grasp.

Palm Orientation Regulation

Manipulability of manipulators is crucial for grasp execution and automation. A planned
grasp with nontrivial pose (Fig. 6.11(10)) may pose a challenge for motion planning of the
robot-hand system. On the other hand, grasping in a top-down manner is beneficial to
maintain the manipulability of the manipulator, despite the fact it constrains the grasp
to a subspace of all feasible grasps. This section introduces a palm orientation regulation
term in order to maintain grasp versatility and prioritize the manipulable grasps. The palm

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 70

regulation term Epr has the following form:

Epr =
�
(Rnp)

T ez − 1
�2

(6.11)

where R is the palm rotation matrix, np is the current normal direction of the palm pointing
towards the finger workspace, ez = [0, 0,−1]T is the target palm normal direction corre-
sponding to a top-down grasp.

The palm orientation term can be integrated if the manipulability of the manipulator
needs to be regulated.

Grasp Volume Regulation

MDISF searches grasps based on the surface fitting error. Minimizing surface fitting error,
however, may produce unfavorable grasps in some special cases. For instance, the desired
grasp on a book in the sense of surface fitting is a large diameter grasp, and the contacts might
only lie on the top surface without satisfying the force closure conditions. Similar behavior
can be observed for the surface fitting in clutter environments, where the point cloud is
spanned across the scene. To avoid large diameter non force-closure grasping, we regulate
the volume of the object that contained inside of the convex hull formed by the contact
polygon and inner hand surface. The volume, however, is challenging to connect with the
optimization variables {R, t, δq}. To simplify the formulation, the volume regulation term
Evr is replaced by the hand manipulability measure in Chapter 5:

Evr = −
Nf�

i=1

Njnt,i�

j=1

(αj
i

qji − q̄ji
qjmax,i − qjmin,i

)2, (6.12)

where Nf , Njnt,i are the number of fingers and number of joints in the i-th finger, and
q̄ji , q

j
max,i, q

j
min,i are the mean and limit values of the j-th joint in the i-th finger. αj

i is the
weights for the j-th joint of the i-th finger. To obtain versatile grasps, the spread joints are
not regulated, i.e., α1

1 = α1
2 = 0.

The grasp volume term can be integrated if the algorithm is running in clutter environ-
ments.

Grasping Imagination

In this section, the found grasps are first ranked based on the proposed quality metric, after
which the grasp trajectories are planned to reach the highly ranked grasps.

Grasp Quality Evaluation

The grasp quality is evaluated based on the grasp wrench space (GWS) [79]. In this chapter,
GWS P is constructed by 1) finding contact points by the nearest neighbor of the final
hand surface on the object, 2) removing the contacts with large normal alignment error, 3)

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 71

extracting the center points and the average normals by K-means, and 4) building P based
on the extracted grasp points and normals using the soft finger model [69]. With the GWS P ,
three quality features are calculated. The first feature Qin is a bool type variable indicates
the ability to resist arbitrary small disturbance by checking the inclusion of origin in P .
The second feature Qvol indicates the magnitude of disturbance resistance by computing the
volume of P . The third feature Qcond indicates the isotropy of the disturbance resistance by
the condition number of the WW T , where W ∈ R6×Np is the vertex matrix of convex hull
P .

The final grasp quality metric Qgsp is represented as:

Qgsp = Qvol +
3

Qcond

+ 11Qin (6.13)

The parameters of (6.13) is obtained by regression using the standard Ferrari-Canny met-
ric [30] on 200 grasps from 10 objects. Equation (6.13) is able to rank the found collision-free
grasps more efficiently than the Ferrari-Canny metric with comparable accuracy. Compared
with Ferrari-Canny metric, the computation time of (6.13) reduced by 98.77% from 2.43
secs/grasp to 0.034 sec/grasp. The top-1 score is 70% and top-3 score is 90%, out of 20
classes to be ranked.

To enhance the robustness of MDISF, the candidate grasps are randomly sampled from
a Gaussian distribution to mimic the uncertainties. More concretely, for a candidate grasp
with final palm pose Rfinal, tfinal, qfinal,m, we randomly sample Nt times:

(Rt, tt, qt,m) ∼ N ((Rfinal, tfinal, qfinal,m), diag(Σr,Σt,Σq))

where qm ∈ R4 (different with joint angle q ∈ R8) denotes the motor value of hand for
BarrettHand, and Σr ∈ R3×3,Σt ∈ R3×3,Σq,m ∈ R4×4 represent the covariance matrices
of the Euler angle of the rotation matrix, translation vector, and joint angles. The grasp
qualities of different grasp samples are averaged, and the highly ranked grasps are fed for
trajectory generation.

Grasp Trajectory Optimization

This chapter presents a two-step procedure to plan the robot-finger trajectories. First, the
hand keeps half-closed and approaches the pre-grasp pose with [56]. The object is represented
by its bounding box in this step. The pre-grasp position is defined by lifting the hand 0.3 m
from the final grasp, and the rotation is defined as the closest canonical orientation from the
final grasp pose. Second, we optimize for the finger trajectories while predefining the palm

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 72

Figure 6.5: (a) Point-box distance calculation. (b) Cloud-box distance calculation.

trajectory by interpolation. The grasp trajectory optimization (GTO) becomes:

min
q1,...,qS

S−1�

s=1

�qs+1 − qs�2 (6.14a)

s.t. dist
�
T (∂Fs; qs − q0

s), ∂O|G
�
≥ 0, (6.14b)

|qs+1 − qs| ≤ Δq, s = 1, ..., S − 1 (6.14c)

qs ∈ [qmin, qmax], s = 1, ..., S (6.14d)

q1 = qpregrasp, qS = qfinal. (6.14e)

where s is the sample index, S is the number of samples on the trajectory, and T (∂Fs; qs−
q0
s) denotes the transformed hand surfaces after the joint displacement at the s-th sample.

Optimization (6.14) is to minimize the total length of the trajectory (6.14a) from the pre-
grasp to final grasp (6.14e) and avoid collision with both the object and ground (6.14b).

Similar to MDISF, the collision constraints are penalized in the cost. We adopt the
formulation in TrajOpt [84]:

col term = |dsafe − sd(∂O, T (∂Fs; qs − q0
s)|+ (6.15)

where dsafe denotes the safety distance, sd(A,B) denotes the signed distance between A and
B, and |x|+ = max(x, 0).

We propose an approach to compute the signed distance sd(∂O, T (∂Fs; qs − q0
s)) in

absence of the 3D mesh and convex decomposition of the object, as shown in Fig. 6.5. We
first inflate the bounding boxes {Bs

k}Nb
k=1 at sample s by dcheck and check the inclusion of

object points. For each interior point qlk , we calculate the signed distance by projecting
qlk to surfaces of Bs

k and filtering out the points with (qlk − pj)
Tnq

l < 0 for those qlk ∈ Bs
k.

The closest point to qlk is denoted as pslk , as shown in Fig. 6.5(a). The point-box signed
distance sd(Bs

k, qlk) = (pslk − qlk)
Tns

lk
and ns

lk
is a normal vector with direction qlk − pslk if

qlk ∈ Bs
k or reverse otherwise. Therefore, sd(Bs

k, ∂O) = minlk sd(Bs
k, qlk) with the critical

index l∗k = argminlk
sd(Bs

k, qlk), as shown in Fig. 6.5(b). The hand-object collision indexes

Ls,o = {l∗k}Nb
k=1. Similarly, the hand-ground collision indexes Ls,g includes all the points that

have potential collision with ground.

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 73

With Ls,o,Ls,g, the collision for the s-th sample is penalized as:

Ecol,s =
�

l∗k∈Ls,o

�
|dsafe − (p̄sl∗k − ql∗k)

Tns
l∗k
|+
�2

+
�

l∗k∈Ls,g

�
|dsafe − (p̄sl∗k − qg)

Tng|+
�2

(6.16)

where p̄sl∗k = psl∗k + J v
l∗k
(q0

s)δqs. Therefore, GTO (6.14) can be reformulated as:

min
δq1,...,δqS

S−1�

s=1

�q0
s+1 + δqs+1 − q0

s − δqs�2 + cEcol,s (6.17a)

s.t. |q0
s+1 + δqs+1 − q0

s − δqs|∞ ≤ Δq, (6.17b)

q0
s + δqs ∈ [qmin, qmax], s = 1, ..., S (6.17c)

δq1 = 0, δqS = 0, (6.17d)

|δqs| < Δδq. s = 1, ..., S (6.17e)

Optimization (6.17) solves for optimal joint displacements {δq∗
s}Ss=1 using the current joint

samples and collided points. The {δq∗
s}Ss=1 then updates joint samples q0

s ← q0
s + δq∗

s, hand
surfaces ∂Fs ← T (∂Fs; δq

∗
s), collision penalty c ← μc and indexes Ls,o,Ls,g. Optimiza-

tion (6.17) iterates until no collision or reaching the maximum iterations.

6.4 Simulations and Experiments

This section presents the simulations and experiments. The experimental videos are available
at [102].

Parameter Lists

For MDISF, α = 0.03. Np = 450, Nb = 7, L = 4, I0 = 200, �0 = 0.02. IPFO used Δ =
1e− 5, Tmax = 20. The power grasp used Gaussian Σ = diag([l/2, w/0.1]) with mean at the
link center, where l, w are the link length and width, and the base weights for palm, proximal
and distal link were 0.1, 0.1, 1. The precision grasp used Gaussian Σ = diag([l/5, w/0.1])
with mean at the fingertip and base weights 0.01, 0.01, 1. For robust quality analysis, Nt = 9,
Σr = 0.032diag([1, 1, 1]), Σt = 0.0032diag([1, 1, 1]), Σq = 0.052diag([1, 1, 1, 1]).

As for GTO, dcheck = 0.03 m and dsafe = 0.01 m, S = 30, Δδq = [0.2, 0.2, 0.2, 0.4],
Δq = [0.4, 0.4, 0.4, 0.4], The maximum iterations for (6.17) was 20. The starting collision
penalty c0 = 1 and μ = 2.

Simulation and Experiment Results

The simulation was conducted on a desktop with 32 GB RAM and 4.0 GHz CPU. The grasps
were computed by Matlab and visualized by V-REP. The BarrettHand BH8-282 was used to

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 74

Figure 6.6: Visualization of MDISF iterations on Dragon object.

test the effectiveness of the algorithm. The visualization of the MDISF iterations is shown
in Fig. 6.6. MDISF considers both the collision avoidance and the surface fitting in each
IPFO iteration. MDISF started from a random pose around the object (Fig. 6.6(a)) and
optimized for palm pose and joint displacements to reduce the fitting error and penalize the
collision (Fig. 6.6(b-h)).

Figure 6.7 shows the error reduction profile to validate that both the average surface
fitting error Efit/|I| and collision cost Ecol are reduced during MDISF. Figure 6.7(Left)
shows the overall error, Fig. 6.7(Middle) shows the average surface fitting error after out-
liers/duplicate removal, and Fig. 6.7(Right) shows the collision error without multiplying
the penalty weight. The red and blue plots show the mean errors and the deviations for all
samples, while the purple and yellow plots show those for collision-free grasps. In average, it
took 25.2± 6.3 IPFOs and 100.2± 34.4 PFOs to converge. The average fitting error Efit/|I|
reduced from 0.0072 ± 0.0031 m to 0.0027 ± 0.0012 m, and the absolute Ecol reduced from
0.5952± 0.4342 m to 0.0287± 0.0410 m. All statistics were computed based on 50 samples
on bunny object shown in Fig. 6.2.

Figure 6.8 and Table 6.1 show the visualization and quantitative results of the proposed
method on ten different objects. The MDISF algorithm sampled 10 times for each object
and returns 6.2 collision free grasps in 2.45 secs. The highest 5 (or the maximum number of
collision free grasps found by MDISF) grasps were selected and fed to GTO for trajectory
optimization. GTO returned 3.3 collision-free trajectories out of 4.0 grasps in 2.02 secs.
The surface fitting error provided a reliable metric for grasp searching, since the majority
(6.1/6.2) grasps found by MDISF were force closure (FC).

The Qgsp reflects the graspability (difficulty of being grasped) of the objects with the
Barrett hand. Goblet and screwdriver were the top-2 objects with the highest graspability
due to the proper size and simple structure. Hand model and gun were the top-2 objects
with the lowest graspability since they are flat and close to ground, and Barrett hand can
easily collide with ground/object and get trapped in the infeasible local optima.

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 75

Figure 6.7: Profile of the error reduction during MDISF.

Figure 6.8: Simulation results of MDISF on ten objects.

Figure 6.9 compares the precision grasps and power grasps generated by MDISF. The
precision mode and power mode generated 8 and 5 collision-free grasps out of 10 samples on
Bunny object, respectively. The hand tended to collide with the object in power grasp mode
since the fitting of palm/proximal links were emphasized and hand stayed closer to object,
as shown in Fig. 6.9(b).

Figure 6.10 shows the result of GTO on Kettle object. The trajectory started from the
top and reached the desired grasp with one finger in narrow space. Green spots indicate
the collided regions. The fingers collided with the object when grasping with the predefined
finger motion, as shown in Fig. 6.10(Top). GTO planed finger trajectories to avoid collision
and reached the target grasp in narrow space, as shown in Fig. 6.10(Bottom).

Figure 6.11 shows the experimental results using the FANUC LRMate 200iD/7L ma-

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 76

Table 6.1: Numerical Results of the Grasping Framework

Object
collision-free#
total samples

Time (secs) Qualities

ISF GTO ISF GTO Sum FC Qgsp

Bunny 8/10 4/5 2.8 3.2 6.0 7/8 6.86
Screwdriver 9/10 1/5 2.2 3.0 5.2 9/9 9.56
Gun 2/10 1/2 2.5 1.8 4.3 2/2 -9.41
Kettle 8/10 5/5 2.1 2.2 4.3 8/8 3.39
Goblet 10/10 5/5 2.4 1.7 4.1 10/10 13.66
Doraemon 9/10 5/5 2.1 1.6 3.7 9/9 9.27
Hand 1/10 1/1 2.3 0.6 2.9 1/1 -12.32
Banana 4/10 3/4 2.2 2.5 4.7 4/4 -1.71
Mug 8/10 5/5 3.0 2.2 5.2 8/8 8.18
Oscar 3/10 3/3 2.9 1.4 4.3 3/3 -6.80

Average 6.2
10

3.3
4.0

2.45 2.02 4.47 6.1
6.2

2.068

Figure 6.9: Comparison of (Top) precision grasp mode and (Bottom) power grasp mode of
MDISF on Bunny object.

nipulator and BarrettHand BH8-282 on ten objects. The scene was captured by two IDS
Ensenso N35 stereo cameras. The observed point cloud and the optimized grasp are shown
in the left, and the executed grasp after GTO is shown in the middle. Extra amount of
finger motion was executed in order to provide necessary force to clamp the object, as shown
in the right. The observed point cloud was incomplete and noisy, and the system also con-
tained uncertainties in calibration (∼3 mm for robot-camera frame alignment), positioning
(∼1◦ TCP-palm alignment, ∼2.0◦ finger joint tracking error) and communication (∼0.1 sec
robot-hand command synchronization error). The system exhibited certain robustness and
was able to plan and execute grasps under the unsatisfying point cloud and various types of

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 77

Figure 6.10: Trajectory snapshots for grasp execution including (Top) predefined finger
motion, and (Bottom) optimized trajectory by GTO.

uncertainties, as shown in Fig. 6.11(1-9).
We also include three failed grasps to reflect three failure modes, as shown in Fig. 6.11(10-

12). The first failure mode was raised from slippage under non-static contacts with the
under-actuated hand. Without quasi-static pressing within the actual friction cone, the
equilibrium of the object will be destroyed, as shown in Fig. 6.11(10). The second failure
mode was raised from the asymmetric distribution of contact forces during clamping, as
shown in Fig. 6.11(11). The third failure mode was raised from the internal disturbance.
The proximal link accidentally collided with object during the clamp stage and introduced
a large disturbance, as shown in Fig. 6.11(12).

Finally, we demonstrate the grasp planning and execution of the proposed framework in
clutter environments. The BarrettHand can form a large diameter grasp by stretching fingers.
To avoid BarrettHand grasping multiple objects in a single grasp, we first segmented the
current scene into individual clusters by Density-based spatial clustering of applications with
noise (DBSCAN) [16]. The largest cluster was then selected for surface fitting by MDISF.
The remaining part of the point cloud was regarded as obstacles in the grasp planning and
grasp trajectory optimization. DBSCAN might group several objects into a single cluster,
especially when the objects are in heavy clutter environments. To avoid MDISF forming
excessively large diameter grasps, the maximum span of the grasp was controlled by a volume
regulation term in Section 6.3. To produce reliable and manipulable grasps, we also added
a palm orientation regulation term in Section 6.3.

Figure 6.12 shows the snapshots of execution. The images with green background show a
successful picking sequence. A grasp test on 6 objects by 97 grasps shows a 82.47% success
rate. The images with red background show failed grasps. The failure is caused by two main
reasons. The first is the unexpected perturbation from unsynchronized contacts, as shown
in Fig. 6.12(f0-f2). The second reason is the slippage of contacts during the object clamping

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 78

stage, as shown in Fig. 6.12(g0-g2).

6.5 Chapter Summary

This chapter proposed an efficient framework for grasp generation and execution by combin-
ing the surface fitting in Chapter 2 and optimization modeling in Chapter 5. The framework
includes a multi-dimensional iterative surface fitting (MDISF) and a grasp trajectory op-
timization (GTO). The MDISF algorithm searches for optimal grasps by minimizing the
hand-object fitting error and penalizing the collision, and the GTO algorithm plans fin-
ger trajectories for grasp execution with the point cloud representation of the object. The
MDISF-GTO exhibits certain robustness to the incomplete/noisy point cloud and various
underlying uncertainties. In average, it took 0.40 sec for MDISF to find a collision-free
grasp, and took 0.61 sec for GTO to optimize the trajectory to reach the grasp. The pro-
posed framework is able to be implemented in both customized grippers and multi-fingered
hands, and plan grasps on individual objects or in clutter environments. Simulations and
Experiments with BarrettHand BH8-282 verified the effectiveness of the framework.

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 79

Figure 6.11: Illustration of the grasp experiments on 10 objects.

CHAPTER 6. EFFICIENT FRAMEWORK FOR GENERAL ROBOTIC GRASPING 80

Figure 6.12: Snapshots of grasp planning in clutter environments with success rate 80/97.

81

Part II

Manipulation

82

Chapter 7

Object Manipulation Architecture by
Modified Impedance Control

7.1 Introduction

In Chapter 6, we introduced a general framework for efficient grasp planning and execution.
In order to lift the object or follow more general object trajectories robustly and reliably, we
have to optimize the grasp forces after building contacts, instead of clamping the object by
simply closing fingers. This type of force optimization in post-grasping stage is called in-hand
manipulation. In general, in-hand manipulation is to produce desired time-varying forces
from fingertips to object, in order to manipulate the object to follow reference trajectories.
However, realizing dexterous in-hand manipulation is challenging regarding the manipulative
dexterity and the grasping robustness. In particular, the fingers and the manipulated objects
are required to achieve desired dexterous object motion in the presence of uncertainties such
as uncertain 3D shapes or imprecise dynamic models.

In-hand manipulation has broad potential applications in industry and agriculture. Fig-
ure 7.1(a) shows an industrial circuit board assembly task, where a circuit board is picked
and placed onto a platform before it is re-grasped from a different orientation in order to
perform the final insertion procedure. Figure 7.1(b) shows a fruit packaging task, where
each fruit has to be rotated and arranged in certain orientation. By properly manipulate the
object in hand, the in-hand manipulation can simplify the procedure and reduce cycle time.

This chapter introduces a comprehensive architecture for dexterous in-hand manipula-
tion. The architecture includes a high-level robust controller for object Cartesian force
generation, a mid-level manipulation controller for contact force optimization, and an op-
tional low-level force tracking controller to track the optimized contact force. The objective
of this chapter is to build the manipulation architecture and validate the architecture with
different types of physical multi-fingered hands. The architecture should be able to adapt
to hands with different structures (sensor types, drivetrains, and control inputs, etc.), and
achieve basic level of robustness.

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 83

Figure 7.1: (Top) Circuit board assembly and (Bottom) fruit packaging.

The presented manipulation architecture exhibits both flexibility and certain robustness.
With the hierarchical structure, the architecture is able to run on hands with torque, force
or velocity inputs and resist certain level of mass uncertainties, contact uncertainties and
external disturbances. The robustness is achieved by the proposed modified impedance
control (MIC). A more effective model-based robust manipulation controller (RMC) will
be introduced in Chapter 8. The manipulation architecture can be served as a low-level
controller for a higher level finger gaits planning. The details of the connection will be
introduced in Chapter 9.

The remainders of this chapter are as follows. Section 7.2 introduces the object ma-
nipulation architecture, including a high-level modified impedance controller, a mid-level
manipulation controller, and a low-level tracking controller for command execution. The
simulation and experimental details are presented in Section 7.3 and Section 7.4. Section 7.5
concludes this chapter and introduces the future work.

7.2 In-Hand Manipulation Architecture

Overall Structure

Figure 7.2 describes the overall object manipulation architecture. In this figure, r, y, n and
e denote the reference pose, the actual pose, the measurement noise and the pose error of
the object, respectively. The signal u denotes the control input to hand motors. The signal
Fdis is the external disturbance to the plant. F is the Cartesian space force command on
the object. The signal f is the contact force command to the object in order to realize F .
The objective is to: 1) track the desired pose r of the object, 2) achieve basic robustness to

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 84

Figure 7.2: Illustration of the object manipulation architecture.

object mass uncertainty, contact force tracking errors and external disturbances Fdis, and 3)
realize firm contact without violating the friction cone constraints.

To achieve the objectives, the manipulation architecture is designed to include a high-
level modified impedance controller (MIC), a mid-level manipulation controller and a low-
level tracking controller. The high-level MIC takes the object trajectory error as input
and generates object Cartesian force command F to track the desired object trajectory
and suppress external disturbances. The mid-level manipulation controller transforms the
Cartesian force command F into contact force command f on contact frames to satisfy the
requirements including slippage avoidance, effort minimization and force smoothness. The
low-level tracking controller converts the contact force command f to hand inputs u, where
u can be the torque, velocity or other commands. The hand takes u and interacts with the
object to change the object pose y. The object pose is observed by a vision sensor with noise
n and feedback to high-level MIC to close the control loop. Depending on the equipped
sensors in each finger, the tracking controller may have different structures. These variances
will be introduced below.

High-Level Modified Impedance Control (MIC)

The hand and object dynamics are described by:

Mh(q)q̈ + Ch(q, q̇)q̇ +Nh(q, q̇) + JT
h (q, xo)fc = τ

Mo(xo)ẍo + Co(xo, ẋo)ẋo +No = G(q, xo)fc
(7.1)

where Mh/o, Ch/o and Nh/o are inertia matrices, Coriolis matrices and gravities for the
hand/object. q, q̇ and q̈ ∈ Rnq are joint angle, velocity and acceleration, with nq as the
total degree of freedoms (DOFs) of the hand. xo, ẋo and ẍo ∈ Rnx are a local parameteri-
zation of object position, velocity and acceleration, where nx is the dimension of the pose
of the object, with nx = 6 for 3D manipulation (nx = 3 for 2D manipulation). fc ∈ Rdcnc

and τ ∈ Rnq are contact force vector and joint torque vector, where dc is the dimension

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 85

of each contact, and nc is the contact number. Jh ∈ R(dcnc)×nq is the hand Jacobian and
G ∈ Rnx×(dcnc) is the grasp map [69].

If the contacts are fixed w.r.t both object and fingertips, then

Jh(q, xo)q̇ = GT (q, xo)ẋo (7.2)

holds. Equation (7.2) assumes the contact forces remain in the friction cone.
The object and hand dynamics in (7.1) can be connected by (7.2):

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = GJ−T
h τ (7.3)

where:
M = Mo +GJ−T

h MhJ
−1
h GT

C = Co +GJ−T
h ChJ

−1
h GT +GJ−T

h Mh
d(J−1

h GT)

dt
N = No +GJ−T

h Nh

(7.4)

The torque command τ can be related to the object-centered force F :

τ = JT
h (G

†F +NGλ) (7.5)

where NG is the matrix composed by the basis of the null space of G, and λ is a free variable
to control the magnitude and direction of the contact force.

The state space equation can be derived by plugging (7.5) into (7.3):

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = F (7.6)

The desired motion of the object is transformed into desired forces on the object through
impedance control, which is similar to [51, 104]. In this section, an additional integral term
is added to impedance controller to address object mass uncertainty:

Fimp =Mdẍo + Bd(ẋo − ṙ) +Kd(xo − r)+

Id
�� t

0

(xo − r)dt

�
(7.7)

where ṙ is the desired velocity of the object, and Md, Bd and Kd are the desired inertia,
damping and stiffness, respectively. Id is a gain matrix for additional integral term.

With the impedance force Fimp as a virtual force, the full system dynamics become:

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = F + Fimp (7.8)

The desired inertia Md is set as M in order to remove the inertia term and acceleration
measurement [51]. In general 3D manipulation, the Coriolis term is typically ignored due
to the low-speed operation condition, as shown in [51]. By plugging (7.7) into (7.8), the
Cartesian force command becomes:

F = C(q, q̇, xo, ẋo)ẋo +N(q, xo) + Bd(ṙ − ẋo) +Kd(r − xo) + Id
� t

(r − xo)dt (7.9)

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 86

Mid-Level Manipulation Controller Design

The manipulation controller is utilized to generate force commands for the hand to track the
desired force generated by the modified impedance controller in Section 7.2. The manipu-
lation controller consists of a force optimizer to search desired contact force f on fingertips
from the desired force F on the object. The force optimizer is formulated into a quadratic
programming (QP):

min
β

α1�f�22 + α2�f − fprev�22 + α3�Ψ�22 (7.10a)

s.t. Ψ = F −G(q, xo)f (7.10b)

f = Bβ (7.10c)

β ≥ 0 (7.10d)

fmin ≤ f ≤ fmax (7.10e)

where f = [fT
1 , ..., f

T
nc
]T is a concatenated contact force vector in contact frame. fprev is

the contact force of the previous time step. B = diag{B1, ..., Bnc} and Bi is a conservative
pyramid approximation of friction cone [57]. β ≥ 0 is the non-negative coefficients of columns
of B. A slack variable Ψ is introduced to relax the hard constraint F = Gf , since F =
Gf might result in an infeasible solution, and the location measurements of contact points
might be noisy. The constraints (7.10c) and (7.10d) together ensure that the contact force
remains within positive colspan(B) (i.e. friction cone). Constraint (7.10e) guarantees that
the contact force f is realizable.

The weights α1,α2,α3 are used to balance different cost terms. They are tuned to penalize
the magnitude of the contact force, the change of the contact force and the force tracking
error, respectively. The tuning process considers the response speed of the real-world hand
actuators and the force tracking performance.

Low-Level Tracking Controller Design

The low-level tracking controller is to realize the contact force command generated by ma-
nipulation controller. Feedback control is usually required since the dynamics model is not
perfectly known for physical hands due to the backlash, friction or joint flexibility, etc. De-
pending on the sensor types and motor input, the tracking control may have different forms.
In manipulation architecture, common sensor types for force control include force sensors
(e.g. ATI F/T sensor nano17), tactile sensors (e.g. BioTac SP or PPS Tactile) on fingertips
or the joint torque sensors (e.g. strain gauge or series elastic actuator) on finger joints. Ex-
cessive calibration (e.g. friction identification, backlash modeling) is required if no of above
sensor types are equipped.

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 87

Figure 7.3: Illustration of the low-level force tracking control.

Option 1: Force Tracking Controller

In this section, we assume that the finger equips with force or tactile sensors on fingertips,
and the motor takes current signal as input. To track the force command generated by
manipulation controller, we design a simple force tracking controller shown in Fig. 7.3.

The force controller contains a force feedback layer with tactile/force sensors and a ve-
locity feedback layer with motor encoders. The force controller is a Proportional control
that converts the force error f − fact to joint velocity command θ̇jntcmd. J

T denotes transpose
of the finger Jacobian, and K is the proportional gain. For those finger systems with small
damping (rigid fingertips and rigid joints), an additional Derivative channel is required to
improve the stability, as shown in Section 8.6 of Chapter 8. The velocity controller is a
Proportional-Integral control that converts the joint velocity command θ̇jntcmd to current com-
mand Icmd. Tjnt2m denotes a transform from joint side velocity θ̇jnt to motor side velocity θ̇m.
Kp and Ki denote the proportional and integral gains.

Option 2: Torque Tracking Controller

In this section, we assume that the finger equips with joint torque sensors in each joint,
and the motor takes current signal as input. To track the force command generated by
manipulation controller, a similar torque tracking controller can be designed. Instead of
feeding fact, the torque feedback suppresses torque error JTf − τact with a P or PD control.
The inner layer is a velocity feedback same with Fig. 7.3. The block diagram is neglected
for brevity.

7.3 Simulation Study

In this section, simulation results are presented to verify the effectiveness of the proposed
manipulation architecture. The simulation video is available at [102].

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 88

Figure 7.4: Two hands used in the simulation.

Simulation Setup

The controller was implemented in Mujoco physical engine [96]. The simulation time step
was set to 2 ms. Our platform was a desktop with 4.0 GHz Intel Core Quad CPU, 32 GB
RAM, running Windows 10 operating system.

Two types of hands were used in the simulation, including a two-fingered hand and a
four-fingered hand for 2D and 3D manipulation, respectively (Fig. 7.4). For purposes of
illustration, a planar hand with two identical fingers and 4 DOFs was set up, as shown
in Fig. 7.4(a). The four-fingered hand has four identical fingers and each finger has three
revolute joints, as shown in Fig. 7.4(b). Two hands are equipped with high-resolution position
sensors for joint position/velocity measurements, motor torque sensors for motor torque
feedback, one-dimensional distributive tactile sensors to measure normal force and infer
surface normal. The manipulated object is approximately 0.5 kg. The dynamics parameters
of the object are assumed to be unknown and estimated by vision sensors.

Comparison with Different Methods

For comparison, the proposed robust controller is compared with a disturbance observer
(DOB) approach proposed in [58]. This approach is briefly reviewed in the following. This
method assumes the dynamics of the system as Mẍo + Cẋo + N + d = F . The dynamics
can be rewritten as ẍo = u + w, where u = F − N̄ and N̄ denotes nominal gravity value,
and w = ẍo − (Mẍo + Cẋo + N − N̄ + d) is the lumped disturbance. Similar to feedback
linearization, the controller is set as u = r̈−k1ė−k2e− ŵ, where e = xo− r. In this manner,
the error dynamics are: �

ė
ë

�
=

�
03×3 I3×3

−k2 −k1

�

� �� �
A

�
e
ė

�
+

�
03×3

I3×3

�

� �� �
B

ew

where ew = w−ŵ, ŵ = ŵ0+KoE, and ˙̂w0 = BTPE. P can be found from ATP +PA = −Q,
and Ko can be found from KoA + KoBKo + BTP = 0, with Q � 0 is a design parameter

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 89

Figure 7.5: Snapshots of the 2D manipulation results with the proposed architecture.

and E = [eT , ėT]T . The desired force on the object is F = u+ N̄ .

Parameter Lists

For manipulation controller, α1 = 0.01, α2 = 0.01 and α3 = 1000. The desired pa-
rameter values for MIC in 2D manipulation were: Kd = 50 × diag([1, 1, 0.2]), Bd = 5 ×
diag([1, 1, 0.02]), Id = 50 × diag([1, 1, 0.2]). As for MIC in 3D manipulation: Kd = 50 ×
diag([1, 1, 1, 0.2, 0.2, 0.05]), Bd = 5×diag([1, 1, 1, 0.02, 0.02, 0.005]), and Id = 50×diag([1, 1, 1,
0.02, 0.02, 0.005]). The low-level tracking controller was bypassed due to the perfect modeling
in simulation. The torque command τ jntcmd = JTf was feed to finger joints directly in an open-
loop manner. The parameters for DOB based control are: k2 = 95× diag([1, 1, 0.01]), k1 =
95×diag([1, 1, 0.008]), and Q matrix is chosen as Q = diag([51000, 51000, 6, 51000, 51000, 1]).

Simulation Results

To simplify the validation process, a 2D manipulation task with the planar hand in Fig. 7.4(a)
was first employed to verify the proposed architecture. Figure 7.5 shows the snapshots of
the 2D manipulation task. The object was assumed to have 20% mass uncertainty. The
simulation constrained the motion of the object into vertical plane, and the desired object
motion was to move to (150 mm, −10 mm, 5◦) from (139 mm, 0 mm, 0◦).

Figure 7.6 compares the proposed modified impedance control with DOB controller on
the same task under 20% mass uncertainty. The solid lines are average convergence profiles
while the shaded batches are associated variations. In average, the proposed manipulation
architecture with MIC converged to the desired pose with settling time 3.14 secs1. The
convergence in gravitational direction exhibited larger variation for different uncertainties,

15% threshold was used for all settling time calculations.

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 90

Figure 7.6: Comparison of the object pose tracking error under 20% mass uncertainty with
(Left) MIC and (Right) disturbance observer in [58].

since it took longer time for the controller to accumulate force when the nominal gravity
is lighter than the actual one. In comparison, the manipulation performance on the same
task with a disturbance observer based controller is shown in Fig. 7.6(Right). The average
settling time was 3.28 secs and the rotational direction was the critical direction that effects
the convergence. The tuning of the parameters is described in [27].

The proposed architecture with MIC can be applied to general 3D manipulation with
the four-fingered hand shown in Fig. 7.4(b). Furthermore, the architecture is able to supply
as the low-level controller for a higher-level finger gaits planning to achieve the large-scale
object motion beyond the hand workspace. The details of the finger gaits planning will be
introduced in Chapter 9. The snapshots of the manipulation architecture in a finger gaiting
task are shown in Fig. 7.7. The task was to rotate the ellipsoid around the gravitational axis
for 180◦. Despite the hybrid dynamics and disturbances during contact rebuilding, the MIC
based architecture remained stability and fulfilled the manipulation task.

Figure 7.8 shows the performance of the manipulation controller under object dynamics
uncertainty and external disturbances. The object is subject to 20% of mass uncertainty
and 2N external disturbance. The manipulation controller is capable of driving the object
to the desired pose.

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 91

Figure 7.7: Snapshots of a finger gaiting task with the proposed architecture.

Simulation Time (s)
0 1 2 3 4 5 6 7 8 9

C
ar

te
si

an
 S

pa
ce

 P
os

iti
on

 (
m

)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
X direction
Y direction
Z direction

2N external disturbance

Figure 7.8: Illustration of architecture on dynamic uncertainty and external disturbances.

7.4 Experiment Study

Experiment Setup

This section presents the experimental validation of the proposed architecture. The al-
gorithm was implemented to two physical hands shown in Fig. 7.9. Both hands have 3
fingers and 9 DOFs. Type A hand in Fig. 7.9(Left) equips with joint encoders in each joint
and BioTac SP tactile sensors [31] on fingertips. The springs and excessive frictions in the
drivetrain introduce extra unmodeled dynamics for precision control [70]. Type B hand in
Fig. 7.9(Right) equips with joint encoders in each joint and ATI Nano17 force/torque sensor
on each fingertip. This hand cannot provide precise contact location and contact normal
information, and the dead zone in the drivetrain introduces extra uncertainties. Figure 7.10
shows the experimental setup. Kinect sensor was used to detect the object pose. The per-
ceived signal was sent to host PC along with tactile/force signals. The host PC computes

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 92

Figure 7.9: (Left) Type A and (Right) Type B hands for in-hand manipulation tasks.

Figure 7.10: Experimental setup for algorithm validation.

the actual object pose xo
act and sends the pose error to the proposed algorithm for desired

joint velocity θ̇mcmd. The target PC runs a low-level PID controller to track the desired joint
velocity θ̇mcmd and sends the torque command to hand motors.

Experimental Results

This section presents the experimental results with the proposed manipulation architecture.
Figure 7.11 shows the experimental implementation of the architecture. First, the robust
controller took object pose error as input, and produced desired Cartesian force on object
(Fig. 7.11(a)). Then the Cartesian object was transformed to contact force on fingertips by
the manipulation controller (Fig. 7.11(b)). Since the hands take motor current command as
input, a force controller was designed to convert the contact force in manipulation controller
into joint velocity (Fig. 7.11(c)). Finally a low-level velocity PID controller was designed
to convert the joint velocity into the motor current to drive the hand (Fig. 7.11(d)). The
following sections introduce the experimental results of the force controller and MIC.

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 93

Figure 7.11: Control flow of the manipulation framework.

Force Control

To verify the effectiveness of the manipulation architecture, a low level contact force tracking
controller was designed beyond the basic velocity control. To collect the force feedback for
type A hand, we first calibrated the BioTac SP sensors. The calibration setup included a Bio-
Tac SP tactile sensor and a ATI mini45 force/torque sensor for ground truth force/torque
values. The tactile sensor consists of a rigid inner core, deductive liquid and an elastic
skin. The rigid core has an array of electrodes to detect 24 channels of impedances. The
changes of impedance values are used to encode force/torque, contact locations and vibra-
tions, etc. However, an analytical relationship between the impedance changes and the
fingertip force/torque are absent. Therefore, we used a neural network adapted from [90]
to model the impedance-force relationship. The contact position/normal was estimated by
averaging the positions/normals of the top-4 electrodes with largest impedance changes.

The network we used was a 3-layer neural network with 393 parameters. The network
had 24 impedance input channels and 3 force output channels. The torque measure was
ignored since we used a point contact with friction model [69]. The network was trained
with 1.2 million data collected in 20 mins.

Figure 7.12 shows the calibration results of the BioTac SP sensor. The error histogram
indicates that the mean square error of the force is concentrated in [−0.43 ∼ 0.35] N, as
shown in Fig. 7.12(a). Figure 7.12(b-d) show an example of the actual force and estimated
force in all three axes. It is worth noting that the error became larger in sharp transition
stage. These large errors caused erroneous force feedback and might affect the stability of
the system. The mismeasured portions were regarded as external disturbances and were

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 94

Figure 7.12: Calibration results of BioTac SP sensor.

suppressed by the proposed MIC.
Figure 7.13 shows the force tracking results with force controller in Fig. 7.3. Extra

springs in the drivetrain of Type A hand are used to absorb the collision energy and improve
the safety ratio during grasping. However, these springs introduce extra dynamics and
pose a challenge to manipulation control. To be more specific, the generated velocity first
stretches/compresses springs to increase/release potential energy before transmitting the
energy to increase/reduce the contact force on fingertips. Consequently, the Type A hand
has very small bandwidth, large phase lag and large magnitude loss. The largest bandwidth
with acceptable force tracking performance is 0.4 Hz, as shown in Fig. 7.13(a). On the other
hand, the Type B hand was able to track a 0.5 Hz sinusoidal force due to its rigid drivetrain
and smaller friction, as shown in Fig. 7.13(b). The bandwidth for force control with Type
B hand is 6 Hz.

Robust Grasping

In this section we demonstrate the proposed architecture on a robust grasping task. Robust
grasping is a special manipulation application where the desired trajectory is degenerated

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 95

Figure 7.13: Force tracking with (a) Type A hand and (b) Type B hand.

Figure 7.14: Illustration of the robust grasp with Type A hand.

into a point. Any external disturbance should be suppressed by observing the pose error
and producing proper force command by MIC.

Figure 7.14 shows the robust grasping results with the Type A hand. The object is
a cylinder box with an ArUco marker on the top surface. The object pose was observed
by measuring the pose of the ArUco marker and transformed to the estimated center of
the object. The external disturbance was exerted by human in several directions. The
object was able to roughly maintain the original grasp pose when perturbing the object in
different directions. The pose error in Fig. 7.14(f) is caused by 1) force estimation error, 2)
finger singularity and 3) pose detection error. Despite the narrow distribution of the force
estimation error in Fig. 7.12(a), a continuous force measurement indicates that the force
estimation error may be excessively large (≥1N) for several instances in each direction. The

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 96

finger singularity is a common problem shared by both types of hands. The singularity will
be introduced later.

Figure 7.15: Force estimation error with the proposed network on a BioTac SP sensor.

Figure 7.16: Snapshots of the manipulation result following a sinusoidal trajectory.

Dexterous Manipulation

Finally, we demonstrate the proposed architecture on a dexterous manipulation task with the
Type B hand. The desired motion was to move sinusoidally around an axis perpendicular

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 97

to the palm. Figure 7.16 shows the snapshots of the tracking results. The initial object
placement is shown in Fig. 7.16(a). The hand closed fingers and detected contacts based on
the ATI nano17 F/T sensor reading. The snapshots in which the object was on its furtherest
point are shown in Fig. 7.16(bdf) while the snapshots in which the object was on its closest
point are shown in Fig. 7.16(ce). Background object (e.g. iPad) may be regarded as a
reference for observing the object motion.

Similarly, there are several factors that affect the performance of the manipulation. These
factors include: 1) contact uncertainty, 2) finger singularity, and 3) errors on object pose
detection. Instead of estimating the contact position/normal by averaging the top-4 elec-
trodes with the largest impedance change, the Type B hand with ATI nano17 F/T sensors on
fingertips cannot provide exact contact positions/normals. Therefore, we roughly estimated
the contact position and normal based on the kinematics of each finger.

As for the finger singularity, both types of hands have the same singularities, as shown
in Fig. 7.17. The first kind of singularity appears when the contact point falls on the axis of
joint 1 (Fig. 7.17(a) red line), as shown in Fig. 7.17(a). The finger with this singularity loses
one DOF that moves perpendicular to the triangle formed by the links of the finger. The
second kind of singularity appears when the finger reaches its joint limit. This singularity is
trivial and can be avoided by [21].

Figure 7.17: Two kinds of singularities of Type A/B hands.

7.5 Chapter Summary

This chapter presented an architecture for robust grasping and dexterous manipulation. The
architecture contains a high-level modified impedance controller (MIC) to generate Cartesian
force on an object from the pose feedback, a mid-level manipulation controller to produce
contact forces on fingertips from the desired Cartesian force, and an optional low-level force
tracking controller to execute the generated force command. The high-level MIC is robust
to underlying uncertainties and external disturbances, the mid-level manipulation controller
avoids slippage and reduces control efforts, and the low-level force controller bypasses the

CHAPTER 7. OBJECT MANIPULATION ARCHITECTURE BY MODIFIED
IMPEDANCE CONTROL 98

unmodeled finger dynamics such as friction, joint flexibility and backlash. Both simulations
and experiments including two types of hands with different sensors and drivetrains verified
the proposed architecture. Preliminary qualitative results of the robust grasping with Type
A hand and dexterous manipulation with Type B hand demonstrated the effectiveness of
the proposed manipulation architecture. The experimental videos are available at [102].

The manipulation performance with both types of hands is greatly influenced by the
finger singularity in Fig. 7.17(a). Under the current design, this singularity is unavoidable,
frequently encountered and challenging to escape once being trapped by it. The traditional
damped least-squares used in [21] does not work in force domain. Future work includes
the investigation of a singularity solution compatible with the force control scheme and
quantitative evaluation of the manipulation architecture.

99

Chapter 8

Robust Dexterous Manipulation
under Various Uncertainties

8.1 Introduction

Chapter 7 introduced a comprehensive architecture for dexterous manipulation. The archi-
tecture exhibits certain robustness due to the high-level modified impedance controller. This
chapter further improves the robustness of the architecture by employing the structure of the
uncertainties. In a general manipulation task, the robotic hand usually has to manipulate
objects with various types of uncertainties shown in Fig. 8.1. Type I uncertainty is caused
by the inaccurate 3D model perception and density distribution of the object. It is sepa-
rated into object dynamics uncertainty and center of mass (COM) uncertainty, as shown in
Fig. 8.1(a) and Fig. 8.1(b). The uncertain terms in object dynamics uncertainty include both
mass and moment of inertia, which are parameters of inertia matrix, Coriolis and gravity of
the object. The uncertain terms in COM uncertainty include COM position and principal
axes of the object, which influence the object dynamics and the force transformation from
contact to object. Black frame in Fig. 8.1(b) shows the actual COM and principal axes, and
red frames show possible variations. Type II uncertainty is caused by the inaccurate sens-
ing and modeling of contacts under various surface properties. It is separated into contact
dynamics uncertainty and tactile uncertainty, as shown in Fig. 8.1(c) and Fig. 8.1(d). The
uncertain terms in contact dynamics uncertainty include stiffness, damping, coefficients of
Coulomb friction, torsional friction and rolling friction, which influence the force transformed
onto the object. The uncertain terms in tactile uncertainty include contact position and ori-
entation, which affect contact force transformation, joint torque generation, and may cause
the problems such as friction cone constraints violation and unexpected slippage. Black ones
in Fig. 8.1(d) show actual position/normal, while red ones show the variations. Besides the
disturbances from the contact dynamics, there might be unexpected contact and external
perturbations from the environment. The controller should be designed with disturbance
rejection ability.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 100

��� ���

��� ���

������

�������

�

�

�

Figure 8.1: Different types of uncertainties in dexterous manipulation.

It is difficult to deal with such uncertainties in dexterous manipulation. First, the object
is not directly controlled by actuators. Alternatively, energy is transferred from the fingertips
to the object through unknown contact dynamics. Second, the robotic hand for dexterous
manipulation can be a high degree-of-freedom (DOF) nonlinear system and can not be
directly written into linear time-invariant (LTI) or linear parametric-varying (LPV) form.

A robust controller for contact uncertainties was proposed in [9]. The controller is de-
signed for a LTI system linearized around an equilibrium point. A force-position controller
using 6D tactile sensors was implemented to realize adaptive grasping [92]. Nonlinearities
were ignored due to its constant-pose grasping property. In order to consider parameter vari-
ations caused by nonlinearities, a LPV control with smooth scheduling was applied in [44],
assuming that the nonlinearities can be approximated through linear varying parameters.
To deal with dynamics uncertainties, a disturbance observer (DOB) was proposed in [58] for
tracking control. The nonlinearities and parameter uncertainties are lumped into a distur-
bance term. It assumes full state feedback, while in dexterous hand, the velocity feedback
is difficult due to the size constraints and cost issue. Feedback linearization was applied to
control an unmanned aerial vehicle [67]. A linear state observer and a DOB are combined
to observe the state and the lumped disturbance. Similar to [58], the structures of the pa-
rameter uncertainties are ignored, and the linear state observer assumes a perfect model for
state estimation.

Chapter 7 introduced a manipulation architecture with modified impedance controller
(MIC) to resist system uncertainties and disturbances. This chapter adopts the architecture
and further proposes a robust manipulation controller (RMC) for dexterous manipulation
under various uncertainties and external disturbances. Distinctive features of this chapter are
as follows. First, the nonlinearities are reduced by feedback linearization on a nominal model.
Compared with LPV that assumes linear variations of parameters, the proposed method is
more computationally efficient for broad-scale manipulations. Second, the robust controller
is formulated as a μ-synthesis problem, and the structures of the uncertainties are considered

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 101

by descriptor form, instead of treating uncertainties as a lumped disturbance, which results in
information loss and a larger disturbance to resist. Moreover, by the dual-stage formulation,
the complicated contact modeling is bypassed, and the contact force is regulated and the
slippage is prevented. Finally, RMC does not require velocity measurements of objects/joints.

The remaining of this chapter is organized as follows. Section 8.2 introduces the robust
manipulation controller framework. Section 8.3 describes the system dynamics and its com-
bination with the feedback linearization. The robust manipulation controller is presented in
Section 8.4. The simulation and experiment results are shown in Section 8.5 and Section 8.6.
Section 8.7 summarizes this chapter.

8.2 Robust Manipulation Controller Framework

Figure 8.2 shows the framework of the robust manipulation controller (RMC). In this figure,
r, y, n and e denote the reference pose, the actual pose, the measurement noise and the pose
error of the object, respectively. The signal u denotes the control input to the linearized
plant. The signal udis is the external disturbance to the plant. F is the desired Cartesian
space force on the object. The signal τ is the torque command to the hand in order to
realize F . The objective is to: 1) track the desired pose r of the object, 2) be robust to
object dynamics uncertainties (i.e. mass and inertia uncertainties) and external disturbances
udis, and 3) realize firm contact without violating the friction cone constraints.

The robust manipulation controller consists of a robust controller and a manipulation
controller from Chapter 7, as shown in Fig. 8.2. The robust controller takes e as input,
and generate F to the object. It applies on a linearized nominal plant with nonlinear
uncertainties. The linearized nominal plant is obtained by feedback linearization on nonlinear
dynamics. The F obtained from feedback linearization and robust controller is converted
into τ by the manipulation controller.

In robust controller design, the feedback linearization is directly connected to the non-
linear dynamics by the assumption that the actual force on the object after executing τ is
close to F . The gap between these two forces is treated as part of udis.

�������
����������

����������
��������������
�������������

���������
�������������

����������������

�������������
����������

Figure 8.2: The general framework of the proposed robust manipulation controller.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 102

8.3 Modeling of Uncertain Manipulation Dynamics

State-Space Dynamics

The dynamics of the hand and object are restated here for clarity:

Mh(q)q̈ + Ch(q, q̇)q̇ +Nh(q, q̇) + JT
h (q, xo)fc = τ

Mo(xo)ẍo + Co(xo, ẋo)ẋo +No = G(q, xo)fc
(8.1)

where Mh/o, Ch/o and Nh/o are inertia matrices, Coriolis matrices and gravities for the
hand/object. q, q̇ and q̈ ∈ Rnq denote the joint angle, velocity and acceleration, with nq

as the total degree of freedoms (DOFs) of the hand. xo, ẋo and ẍo ∈ Rnx are a local parame-
terization of object position, velocity and acceleration, where nx is the dimension of the pose
of the object, with nx = 6 for 3D manipulation (nx = 3 for 2D manipulation). fc ∈ Rdcnc

and τ ∈ Rnq are contact force vector and joint torque vector, where dc is the dimension
of each contact, and nc is the contact number. Jh ∈ R(dcnc)×nq is the hand Jacobian and
G ∈ Rnx×(dcnc) is the grasp map [69].

If the contacts are fixed w.r.t both object and fingertips, then

Jh(q, xo)q̇ = GT (q, xo)ẋo (8.2)

holds. Equation 8.2 assumes the contact forces remain in the friction cone.
The object and hand dynamics in (8.1) can be connected by (8.2):

M(q, xo)ẍo + C(q, q̇, xo, ẋo)ẋo +N(q, xo) = GJ−T
h τ (8.3)

where:
M = Mo +GJ−T

h MhJ
−1
h GT

C = Co +GJ−T
h ChJ

−1
h GT +GJ−T

h Mh
d(J−1

h GT)

dt
N = No +GJ−T

h Nh

(8.4)

In some applications such as fruit harvesting, only the rough values of the mass mo and
the inertia Io of the object can be estimated. Therefore, Mo, Co, No cannot be exactly known
and would exhibit some uncertainties. Suppose that the inertia, Coriolis and gravity can be
represented as:

M = M̄ + M̃o, C = C̄ + C̃o, N = N̄ + Ño (8.5)

with nominal values:

M̄ = M̄o +GJ−T
h MhJ

−1
h GT

C̄ = C̄o +GJ−T
h ChJ

−1
h GT +GJ−T

h Mh
d(J−1

h GT)

dt
N̄ = N̄o +GJ−T

h Nh

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 103

where M̄o, C̄o, N̄o are nominal object inertia, Coriolis, gravity, and M̃o, C̃o, Ño are correspond-
ing uncertainties. The torque command τ can be related to the object-centered force F :

τ = JT
h (G

†F +NGλ) (8.6)

where NG is the matrix composed by the basis of the null space of G, and λ is a free variable
to control the magnitude and direction of the contact force.

The state space equation can be derived by plugging (8.5) and (8.6) into (8.3):

⎛
⎜⎜⎜⎜⎝

�
I O
O M̄

�

� �� �
M̄aug

+

�
O O
O M̃o

�

� �� �
M̃aug

⎞
⎟⎟⎟⎟⎠

�
ẋo

ẍo

�

����
ẋ

+

⎛
⎜⎜⎜⎜⎝

�
O
N̄

�

����
N̄aug

+

�
O
Ño

�

� �� �
Ñaug

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

�
O −I
O C̄

�

� �� �
C̄aug

+

�
O O
O C̃o

�

� �� �
C̃aug

⎞
⎟⎟⎟⎟⎠

�
xo

ẋo

�

����
x

=

�
O
I

�

����
BF

F

(8.7)
where I,O ∈ Rnx×nx . Equation (8.7) can be rewritten as:

ẋ = −M̄−1
augC̄augx− M̄−1

augN̄aug + M̄−1
augBFF − M̄−1

augM̃augẋ− M̄−1
augC̃augx− M̄−1

augÑaug (8.8)

In 3D manipulation, the parameters of (8.8) can be decomposed as:

− M̄−1
augM̃aug = L1ΔR1, −M̄−1

augC̃aug =
2�

j=1

L2jΔR2j (8.9)

when parameterizing the rotation matrix R of the object by Z-Y-X Euler angles E, with

L1 = L21 = [06×6; M̄
−1]× diag(I3×3, Q

T
E)

Δ = diag(δmI3×3, δI1 , ...δI3) with�Δ�∞ ≤ 1

R1 = −diag(ΔmI3×3,ΔI)× [06×6, diag(I3×3, QE)]

R21 = −diag(ΔmI3×3,ΔI)× [06×6, diag(03×3, Q̇E)]

L22 = [06×6; M̄
−1]× diag(I3×3, R(QEĖ)̂)

R22 = −diag(ΔmI3×3,ΔI)× [06×6, diag(03×3, QE)]

where Δm ∈ R and ΔI = diag(ΔI1, ...ΔI3) are the maximal mass and inertia uncertainties,
QE ∈ R3×3 is a Jacobian matrix from Euler angle rate Ė to angular velocity of the object in
body frame, and (•)̂ denotes the matrix representation of cross product.

With (8.9), the uncertainty term −M−1
aug(M̃augẋ+ C̃augx) in (8.8) can be represented by:

L1Δ (R1ẋ+R21x)� �� �
z1

+L22ΔR22x����
z2

= L1 Δz1����
w1

+L22 Δz2����
w2

= L1w1 + L22w2
(8.10)

2D manipulation is used for illustration and comparison purpose. The Coriolis uncer-
tainty can be eliminated by choosing the local parameterization as body frame translation

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 104

and rotation angle. Thus L21, R21 and L22, R22 are removed, and

L1 = [03×3; M̄
−1]

Δ = diag(δmI2×2, δI3) with�Δ�∞ ≤ 1

R1 = [03×3,−diag(ΔmI2×2,ΔI3)]

(8.11)

In general 3D manipulation, the Coriolis term is typically ignored due to the low-speed
operation condition, as shown in [51].

The control input u is F , and the augmented gravity N̄aug can be compensated by an
additional control input u0 = N̄aug. The gravity uncertainty Ñaug is considered as part of
the disturbance udis. Then the uncertain state space model is represented as:

ẋ = −M̄−1
augC̄aug� �� �
A

x+ L1����
B1

w1 + M̄−1
augBF� �� �
B2

(u− u0 + udis)

z1 = C1x+R1L1� �� �
D11

w1 +R1M̄
−1
augBF� �� �

D12

(u− u0 + udis)

y = [I3×3, 03×3]� �� �
C2

x w1 = Δz1

(8.12)

where C1 = −R1M̄
−1
augC̄aug. Equation (8.12) describes uncertainties by linear fractional

transformation (LFT). Notice though the system is nonlinear, due to the state dependencies
of the dynamics parameters.

Combining Feedback Linearization with Modeling

A challenge in robust control is the implementation on nonlinear systems. Although some
extensions have been done for LPV systems, the application of robust control to a general
nonlinear system is still challenging.

To reduce the influence of nonlinearities, feedback linearization is applied to linearize the
model. More specifically, for (8.8), the command force may be:

F =
�
M̄−1

augBF

�† �
M̄−1

augC̄augx+ M̄−1
augN̄aug + BFu

�
(8.13)

Notice
�
M̄−1

augBF

� �
M̄−1

augBF

�†
= [03×3, 03×3; 03×3, I3×3], rather than identity. Therefore, (8.8)

becomes:
ẋ = Ax+ BFu− M̄−1

augM̃augẋ− M̄−1
augC̃augx− M̄−1

augÑaug

A =

�
03×3 I3×3

03×3 03×3

�
(8.14)

Following the similar procedure as (8.9) and (8.11):

ẋ = Ax+ L1w + BF (u+ d)

z1 = R1Ax+R1L1w1 +R1BF (u+ d)

y = [I3×3, 03×3]x w1 = Δz1

(8.15)

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 105

The model would be a LTI system if there were no uncertainties. However, due to the
parametric uncertainties, the feedback linearization based on nominal parameters will not be
able to eliminate all the nonlinearities. Therefore, the remaining nonlinear uncertainties after
feedback linearization are approximated by a LTI system evaluated around an equilibrium
point. The resultant system has the same form as (8.15), except that the L1 and R1 are
evaluated at the equilibrium point. The feasibility of this approximation is validated in
Section 8.5.

The linearized plant described by (8.15) is controllable and observable. The robust con-
troller will be designed based on this linearized plant.

8.4 Robust Manipulation Controller Design

Robust manipulation controller consists of a robust controller and a manipulation controller.
This section presents the design process of the robust controller. The introduction of ma-
nipulation controller can be found in Chapter 7.

Design Scheme

Robust controller is to obtain desired Cartesian force of the object for motion tracking with
guaranteed robust stability and performance. The generalized plant Pgeneral that the robust
controller will work on is shown in Fig. 8.3. GNL and Δ define an upper LFT w.r.t. Δ
(denoted as Fu(GNL,Δ)) to represent the nonlinear uncertain dynamics, as shown in red
dash box. The feedback linearization described by α(x) + β(x)u is connected with the
nonlinear uncertain plant to linearize the nominal model, as shown in the blue dash-dot box.
Equation (8.15) is the combination of two boxes.

The inputs to the generalized plant Pgeneral are {r, udis, n, u}, which denote the pose
reference, the input disturbance, the noise and the control input to the plant. The outputs
of the plant are {wperf, wu, e}, which denote the tracking performance, the action magnitude
and the pose error. Wperf is to suppress tracking errors at different frequencies. Wu is
to regulate the control input. Wdis is to shape the input disturbance. Wn is to shape the
measurement noise. The structures of the weighting functions will be described in Section 8.4.

The connection between the generalized plant Pgeneral and the controller K is described
by Fig. 8.4. Pgeneral and K define a lower LFT w.r.t. K as Fl(Pgeneral, K), to denote the
closed-loop system. The closed-loop system concatenates the inputs {r, udis, n} as d and the
outputs {wperf, wu} as e. The objective of the robust controller design is to synthesize K to

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 106

���������������

����������������

Figure 8.3: Generalized plant with weighting functions.

Figure 8.4: Illustration of the closed-loop system.

keep e small for all reasonable d. The small is in the sense of infinity norm, i.e.

K = argmin
K

�FL(Pgeneral, K)�∞

with:

e = FL(Pgeneral, K)d

�FL�∞ := max
ω∈R

σ̄(FL(jω))

(8.16)

The D-K iteration is applied to solve (8.16):

min
K

inf
D

�DFL(Pgeneral, K)D−1�∞ < 1 (8.17)

Readers can refer [4] for implementation details.
The designed controller K will be used to calculate u based on the pose error e. Then the

output of the controller is combined with feedback linearization (8.13) to obtain the desired
Cartesian space force F for the object.

Design of Weighting Functions

The general form of a weighting function W (s) in Pgeneral can be written as:

W (s) = diag([a1W1,1(s), a2W2,2(s), a3W3,3(s)])

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 107

where ai is the weight to the i-th channel. Wi,i is a SISO filter determined by high-frequency
gain Gh, low-frequency gain Gl, cross-over frequency ωc, and order n. In this section, the
principle for choosing parameters is introduced. The concrete values for these parameters
will be shown in Section 8.5.

Design of Performance Weighting Function Wperf

Wperf penalizes the tracking error caused by the general disturbance d. High cross-over
frequency wc penalizes the disturbance with large bandwidth. With larger wc, the system
takes shorter time to settle down, and the desired force tends to change at higher frequencies.
Consequently, the error oscillates at higher frequencies. The low-frequency gain Gl penalizes
the magnitude of low-frequency disturbance. When Gl is very small, the low-frequency error
is large, but the high-frequency error is small, which means that the system takes shorter
time to converge. On the other hand, the high-frequency gain Gh penalizes the magnitude
of high-frequency disturbances. Increasing Gh will speed-up the convergence. However, the
oscillation will be enlarged, and the low-frequency performance will be compromised. As for
n, large order n makes the system have more freedom to choose the best controller, while an
excessive large n increases the order of the controller. The motivation for tuning ai is the
fact that the behavior in translation directions and rotation direction are usually different
because of different parameter scales.

Design of Action Weighting Function Wu

The actions at different frequencies are penalized equally. This is a special case when Gl =
Gh, which means the weighting function is a constant. Similar as before, large Gl/h penalizes
the magnitude of action. A larger Gl/h results in more penalty to control effort, thus the force
generated by the controller is smaller. The smaller force can result in slower convergence
speed and poor disturbance rejection. On the contrary, a small Gl/h can make the controller
generate excessive large force and damage the object. The influences of ai and n can be
reflected into changing Gl/h.

Design of Disturbance Weighting Function Wdis

The disturbance weighting function is used to shape the exogenous disturbance in the gener-
alized plant Pgeneral. The cross-over frequency ωc indicates the shaping bandwidth. Generally,
it enlarges the magnitude of low-frequency disturbances and shrinks the magnitude of high-
frequency disturbances. A large Gl will create a virtual disturbance with large low-frequency
gain. Therefore, the controller would concentrate on reducing the low-frequency disturbance.
In our implementation, the gravity is treated as static disturbance. Therefore, increasing
Gl makes the actual system response faster by using the larger control effort. The high-
frequency gain Gh specifies the shaping factor to high-frequency disturbances. A large value
makes the system consider the disturbance rejection in full scale, and the low-frequency dis-

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 108

turbance response will be compromised. Similar with Wperf, ai specifies the scales of shaping
for different channels, and n specifies the freedom of designing Wdis.

Design of Noise Weighting Function Wn

The Wn is designed to be a high-pass filter to shape the noise to the generalized plant Pgeneral.
The reasons are twofolds. First, the vision sensor used for object pose detection has high-
frequency noises. Second, the manipulation controller used for desired force approximation
is a low-pass filter, which may result in additional high-frequency approximation error. The
tuning of noise weighting is similar with disturbance weighting tuning.

8.5 Simulation Study

Simulation Setup

The controller was implemented in the Mujoco physics engine [96]. The simulation time step
was set to be 2 ms. Our platform was a desktop with 4.0 GHz Intel Core Quad CPU, 32 GB
RAM, and running Windows 10 operating system.

The hand models used in the simulation are shown in Fig. 8.5. The general hand model
used in 3D manipulation is shown in Fig. 8.5(a). It has four identical fingers and 12 DOFs.
Each finger has three revolute joints. For illustration purpose, a planar hand with two
identical fingers and 4 DOFs was set up, as shown in Fig. 8.5(b). Two hands are equipped
with joint encoders, motor torque sensors, and one-dimensional distributive tactile sensors.
The manipulated object is approximately 0.5 kg. To mimic an actual real-world finger, the
density of each finger link is set to 10000 Kg/m3. The manipulated objects for four-finger
hand and three-finger hand are approximately 0.5 Kg and 0.3 Kg. The 3D mesh models of
objects are unknown to the planner. Rather, a vision system can be employed to obtain the
pose of the object by tracking the features on it. Currently, the object pose is obtained from
Mujoco. In future real world experiments, approach in [59] can be employed to estimate the
pose of objects.

Parameter Lists

The parameters of the weighting functions in Section 8.4 are shown in Table 8.1:
Table 8.1: Parameters of Weighting Functions

Weightings ωc Gl Gh (a1, a2, a3) n
Wperf 2π 1100 0.9 (1,1,2) 2
Wu N/A 0.0001 0.0001 (1,1,0.5) 1
Wdis 200π 80 0.1 (1,1,10) 2
Wn 20π 0.1 10 (1,1,1) 1

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 109

�

��

�

(b)(a)

Figure 8.5: Two hand models used in the simulation.

Figure 8.6: Comparison of the proposed RMC with the DOB and MIC.

The parameters of manipulation controller were set as follows: the joint torques were
constrained by τmin = −0.5 Nm and τmax = 0.5 Nm. 0.5 Nm is twice the joint torque in
static case. The weights for different cost terms in (7.10) were α1 = 0.1,α2 = 0.1,α3 = 1000.
The dimensionality of the contact space in the simulation was set as 6, with sliding, torsional
and rolling friction coefficients 1, 0.005 and 0.0001, respectively. In manipulation controller
design, we used the point contact with friction model [69] and assumed a conservative sliding
friction coefficient 0.5774. The values associated with various uncertainties mentioned in
Fig. 8.1 would be introduced below. fmin = 2 N and fmax = 20 N.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 110

Simulation Results

Comparison with Different Methods

To simplify comparison, a 2D manipulation task is first employed to compare the proposed
RMC with other methods. The desired object motion is to move to (150 mm, −10 mm,
5◦) from (139 mm, 0 mm, 0◦). The equilibrium point is chosen as the configuration upon
contact, which can be planned by grasp planning. In this chapter, the equilibrium point
is prerecorded for simplicity, and the nominal parameters required for modeling can be
calculated accordingly.

The controller was designed to be robust to 40% mass and 50% moment of inertia un-
certainties. The resultant robust stability margin was 1.73, which means that the system
could withstand about 73% more uncertainties than were specified in the uncertain elements
without going unstable. The proposed method is compared with the modified impedance
control (MIC) from Chapter 7 and the disturbance observer (DOB) based tracking in [58],
as shown in Fig. 8.6. All these three methods assume the variations of mass and moment of
inertia are within 20% and 50%, respectively.

The object motion tracking result using MIC is shown in Fig. 8.6(a). The solid lines
are average convergence profiles while the shaded batches are associated variations1. The
average settling time2 for different uncertainties is 3.14 secs. The convergence in gravita-
tional direction exhibits larger variation for different uncertainties, since it takes longer time
accumulate force when the belief gravity is lighter than actual gravity.

The convergence behavior using DOB is shown in Fig. 8.6(b). The average settling time
is 3.28 secs and the rotational direction is the critical direction that effects the convergence.
The tuning of the parameters are described in [27]. The object pose tracking using the
proposed RMC is shown in Fig. 8.6(c). The average settling time is 0.72 sec. Consequently,
the oscillation is large compared with other methods. The error profiles have small variations
under different mass and moment of inertia uncertainties.

The feedback linearization is applied in Section 8.3 to eliminate the nonlinearities of the
nominal system. However, the nonlinearities still exist in the uncertain terms, as shown in
(8.14). The remaining uncertainties are approximated as linear by evaluating parameters
at an equilibrium point. The error introduced by this approximation could be treated as a
disturbance and is called the disturbance from LTI approximation dLTI:

dLTI = (I − M̄eqM̄
−1)(M̃oẍo + Ño)− M̄eqM̄

−1C̃oẋo (8.18)

where M̄eq is the nominal inertia matrix at the equilibrium point. The magnitudes of dLTI

in both time and frequency domain are shown in Fig. 8.7. The magnitude and spectrum
of dLTI are shown in Fig. 8.7. The disturbance caused by LTI approximation has small
magnitude compared with disturbance rejection introduced later, and mainly lies in low-
frequency region(<12 Hz), thus can be suppressed by the proposed robust controller.

1± standard derivation is used as the boundary of variation
25% threshold is used for all settling time calculations.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 111

0 0.5 1

Time (second)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

F
or

ce
 (

N
ew

to
n)

-0.01

-0.005

0

0.005

0.01

0.015

T
or

qu
e

(N
m

)

Disturbance in Time Domain

X Direction
Y Direction
 Direction

0 100 200 300

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ag

ni
tu

de

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ag

ni
tu

de

10-3Single-Sided Amplitude Spectrum of Disturbance

X Direction
Y Direction
 Direction

Figure 8.7: Disturbance caused by LTI approximation.

Figure 8.8: Performance of 3D manipulation using the proposed algorithm.

Robustness to Uncertainties

A general 3D manipulation task using four-finger hand is presented to demonstrate the
robustness of the proposed RMC to various uncertainties. The desired object displacements
are (4, 4, 11) mm, (0, 0, 0.5) rad. The velocity measurement is not required since the Coriolis
force in (8.3) is neglected. The snapshot of this type of manipulation is presented in Fig. 8.8.
The object is a cylinder with mass 0.535 Kg and radius 35 mm. The proposed RMC is
robust to object dynamics uncertainties. The robust controller was designed to be robust to
40% mass and 50% moment of inertia uncertainties, while the mass and moment of inertia
uncertainties in the controller vary from {−40%,−80%} to {+50%,+80%} of their true

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 112

Figure 8.9: The pose tracking errors under different mass and moment of inertia uncertain-
ties.

values. The influence of these parameter variations is described in Appendix A.1. The
tracking errors and the corresponding desired force on object of RMC with the sampled
uncertainties are shown in Fig. 8.9(Left) and Fig. 8.9(Right). Similar as before, the solid
lines represent the average values and the shaded patches represent the variations for different
uncertainties. The average settling time for all the samples are 1.31 secs, while the largest
settling time 2.25 secs appears in x-direction when the uncertainties are {−40%,−80%}.

In addition, the proposed RMC is also robust to COM uncertainty. The maximum posi-
tion deviation from the actual COM of the object is ±{10, 10, 15} mm, while the maximum
orientation derivation from the actual principal axes of the object is ±{0.3, 0.3, 0.3} rad in
ZYX Euler angle. The influence of these parameter variations is shown in Appendix A.1.
The object has 20% mass and 50% moment of inertia uncertainties at the same time. The
tracking errors and the associated desired forces on the object are shown in Fig. 8.10(Left)
and Fig. 8.10(Right). The average settling time for all the samples are 2.13 secs, while the
largest settling time 2.46 secs appears in x-direction when the uncertainties are {5, 5,−15}
mm and {0.3, 0.3, 0.3} rad. The Cartesian force converges to effective gravitational force to
compensate the gravity for the composite system.

Thirdly, we demonstrate the robustness of the RMC to contact dynamics uncertainties.
In Mujoco, the reference acceleration aref after contact is modeled by a virtual spring with
stiffness and damping {kc, bc}, with aref = −kcrc−bcvc, where rc, vc are residual and velocity,
and the implemented acceleration aimp is interpolated by aimp = daref + (1− d)a0, where d is
an interpolation factor and a0 is the acceleration in absence of constraint. In the simulation,
{kc, bc} vary from {4440.9, 133.3} to {63131.5, 505.2}, and the object has 20% mass and 50%
moment of inertia uncertainties in the meantime. The tracking errors and the corresponding

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 113

Figure 8.10: Tracking errors and desired force under COM uncertainty.

desired forces under the sampling of these parameters are shown in Fig. 8.11. The average
settling time for all samples are 1.29 secs, and the largest settling time 2.28 secs appears
in x direction when kc = 4440.9 and bc = 133.3. The Cartesian force converges to effective
gravitational force to compensate the gravity for the composite system. The robustness to
friction uncertainties will be described in next Chapter.

Figure 8.11: Tracking errors and desired force under contact dynamics uncertainties.

Finally, the proposed RMC is robust to tactile uncertainty. The nominal contact posi-
tion c̄i and rotation R̄ci for the i-th contact are computed by c̄i = ci + δc, R̄ci = Rci · δRc,

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 114

where ci and Rci are actual contact position and rotation, and δc and δRc are uncertainties
added to the contact, with δc ∼ N (mδc, σ

2
δc) and δRc generated from Euler angle uncertainty

δEc ∼ N (mδE, σ
2
δE). The nominal contact positions for finger 1 and 3 c̄1/3 were set to c1/3−δc

to avoid the influence of symmetry. In the simulation, mδc varies from [−5,−5,−5] to [5, 5, 5]
mm, σδc = 3diag([1, 1, 1]) mm, and mδE varies from [−0.2,−0.2,−0.2] to [0.3, 0.3, 0.3] rad
and σδE = 0.1diag([1, 1, 1]) rad. The influence of these parameter variations is shown in
Appendix A.1. In the meantime, the object has 20% mass and 50% moment of inertia un-
certainties. The tracking errors and the associated force on object under above uncertainties
are shown in Fig. 8.12. The average settling time for all samples within the range is 1.39
secs, and the largest settling time 2.58 secs appears in x direction when mδc = [5, 5, 5] mm
and mδE = [0.2, 0.2, 0.2] rad.

Figure 8.12: Tracking errors and desired force under tactile uncertainty.

8.6 Experiment Study

Experimental Setup

This section presents experimental validation of the proposed RMC algorithm. The algo-
rithm was implemented to BarrettHand BH8-282. The BarrettHand has 3 fingers, 4 DOFs
and 8 joints. Each finger has 2 joints driven dependently by 1 motor through gears and wires.
An additional motor controls the spread joints of both finger 1 and 2, causing dependent
motion of two spread joints. It equips a joint encoder in each joint, pressure profile systems
(PPS) tactile sensors on fingertips and palms, and a strain gauge joint torque sensor at the
distal link of each finger.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 115

Figure 8.13: Experimental setup for RMC validation.

Figure 8.13 shows the experimental setup for RMC validation. A Logitech C270 webcam
was used to perceive the scene and capture the motion of ArUco markers. Marker detection
and pose estimation algorithms from OpenCV were applied to estimate the object 3D posi-
tion and orientation. The pose error was then sent to proposed RMC algorithm to produce
desired contact force for hand-object interaction. Since the wire-driven introduces excessive
frictions for direct open-loop force implementation, tactile and torque signals were fused
to estimate actual contact force and provide feedback for a low-level contact force tracking
controller.

Figure 8.14 shows the control structure of the proposed implementation. It consists of
two control levels including a high-level robust manipulation controller (RMC) shown in red
and a low-level contact force tracking controller shown in yellow. RMC takes object pose
as input, and generates the desired contact force fcmd. The contact force tracking controller
tracks the contact force on fingertips with the force feedback. For BarrettHand BH8-282
with fingertip tactile sensors and distal joint torque sensors, the actual contact force fact on
each fingertip is obtained from pressure readings of PPS sensors multiplying effective contact
areas as well as the strain gauge torque readings of distal links. The force tracking controller
is a proportional-derivative (PD) controller. The derivative channel increases the damping
of interaction and improves the stability of closed-loop system. The details of the sensor
fusion is introduced below.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 116

Figure 8.14: Manipulation structure for experimental validation.

Figure 8.15: Illustration of the contact force calculation.

Experimental Results

Sensor Fusion and Force Control

The force control is to track the contact force command fcmd generated by manipulation
controller. With point contact with friction (PCWF) model [69], the contact force on the
i-th fingertip f i = [f i

x, f
i
y, f

i
z]

T ∈ R3, where f i
z, f

i
x, and f i

y represent projection of f along
the normal, finger, and joint axis directions, respectively, as shown in Fig. 8.15. The PPS
tactile sensor equipped on the fingertip is a one-dimensional pressure sensor and only f i

z is
measurable by multiplying the perceived pressure readings with effective contact areas. To
further obtain the remaining force elements, we employ the strain gauge torque sensor in
each distal joint. More specifically, the relationships between tactile/torque observations and

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 117

contact force are represented as:

τ i3 = (wi
3 × ri3)

TRif i i = 1, ..., 3

f i
z = [0, 0, 1]T · f i i = 1, ..., 3

τ i1 = (wi
1 × ri1)

TRif i i = 1, 2

τsp = τ 11 + τ 21

(8.19)

where τ i3, w
i
3, r

i
3 represent the joint torque, joint axis, and rotation radius of the distal joint of

i-th finger, Ri represent the rotation from contact frame Ci to world frame, f i
x, f

i
y, f

i
z denote

the decomposition of contact force f i towards the axes of Ci, and τ i1 denotes the torque of
joint 1 of i-th finger and τsp is the torque measurement of the spread joint.

Equation (8.19) defines 7 independent functions with 9 unknown variables, so the contact
force is not observable. Further kinematic analysis shows that the contact forces along the
normal and finger directions f i

x, f
i
z, i = 1, 2, 3 are solvable by first two sets of equations.

The components f 1
y , f

2
y are perpendicular to the finger planes and are not controllable or

observable, given the fact that finger 1 and 2 are moved dependently controlled with one
spread motor, and the torque τsp on the load side is not directly measurable. f 3

y is structural
force and not observable. The contact force tracking control uses the force estimation of
(f 1

x , f
1
z , f

2
x , f

2
z , f

3
x , f

3
z).

Figure 8.16 shows the tracking results of the contact force in the normal direction (fz)
with finger 2. The force tracking controller contains proportional-derivative (PD) feedback
channels (P gain is 0.5 and D gain is 0.2) and ran on 30 Hz to convert the force command
to motor velocity, as shown in Fig. 8.14. The red curves are desired force trajectories with
frequencies span from 0.2 Hz to 2 Hz, and the blue curves are the actual force from PPS
tactile sensor multiplying effective contact areas. The tracking controller suffers from large
nonlinearities, as shown in the downside of the sinusoidal curves. The nonlinearities may
come from the large Coulomb friction or the backlash in the drivetrain. The phase error
becomes excessive large when tracking a 2 Hz force curve.

Compared with Type A hand in Chapter 7, the BarrettHand has more rigid drivetrains,
thus a derivative channel is required to increase the damping and improve stability. The
rigidity of the drivetrain increases the bandwidth of force tracking from 0.4 Hz to 1 Hz.
Compared with Type B hand in Chapter 7, the BarrettHand has larger friction, backlash
and lower control rate, which introduce more nonlinearities and latencies. Therefore, the
bandwidth for force control with Type B hand (6 Hz) is higher than BarrettHand (1 Hz).

Robust Manipulation Results

This section shows the experimental results using the proposed robust manipulation con-
troller (RMC) with a low-level contact force tracking controller.

The object to be manipulated is 0.29 Kg, while the estimated mass is 0.2 Kg (31% mass
uncertainty). RMC was designed to resist 40% mass and 50% moment of inertia uncertain-
ties. Due to the large sampling time of the force tracking control, the continuous plant was

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 118

Figure 8.16: Illustration of the normal contact force tracking results.

first discretized with Ts = 0.033 s before RMC design. With the plant discretization, the
parameters of weighting functions in Section 8.4 are redesigned and shown in Table 8.2:

Table 8.2: Weighting Functions of Barrett Experiment

Weightings ωc Gl Gh (a1, a2, a3) n
Wperf 8π 20 0.9 (1,1,1,1,1,1) 2
Wu N/A 0.0003 0.0003 (1,1,1,0.1,0.1,0.1) 1
Wdis 8π 32 0.1 (1,1,1,1,1,1) 2
Wn 8π 0.1 10 (1,1,1,1,1,1) 1

The closed-loop system with the designed RMC has robust stability margin is around 1.13,
which means that the system can withstand about 13% more uncertainty than is specified
in the uncertain elements without going unstable.

Fixed Target Pose Tracking The achievable object motion is affected by both kinematic
constraints caused by limited sensors for force tracking and low-DOFs of the hand. On one
hand, the contact force components f i

y, i = 1, ..., 3 are not measurable by the equipped PPS
tactile sensors or strain gauge torque sensors. On the other hand, the fundamental grasp
constraint [69] describes the relationship between finger velocity and object velocity under
non-slippage condition:

Jh(θ, xo)M θ̇m = GT (θ, xo)ẋo

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 119

Figure 8.17: Snapshots of fixed pose tracking with RMC.

where xo ∈ R6, θ ∈ R8, θm ∈ R4 denote object pose in local coordinates, joint angle and
motor angle, respectively, JhM ∈ R9×4 is the hand Jacobian in motor side and M ∈ R8×4

is the transformation from joint angle to motor angle, and GT ∈ R9×6 denotes transpose
matrix of the grasp map. Grasp manipulability [69] is used to characterize the existence of
hand motion θ̇m to realize arbitrary ẋo. The grasp is manipulable on a configuration (xo, θ)
if and only if colspan(GT) ⊂ colspan(Jh(θ, xo)M). In general three-point contact condition
of BarrettHand, rank(GT) = 6 > 4 = rank(JhM), thus the grasp is not manipulable and
cannot achieve arbitrary object motion. The realizable object motion ẋo,real = {ẋo|GT ẋo ∈
colspan(JhM)}.

Further analysis on force-torque relationship reveals the deficiency of BarrettHand on
dexterous manipulation. The relationship between object Cartesian force and motion torque
of BarrettHand is:

F = G(JhM)−T τm� �� �
controllable

+GN
�
(JhM)T

�
λ� �� �

structural

, (8.20)

where F ∈ R6, τm ∈ R4 denote object Cartesian force and motor torque, and N (•) denotes
the null space of •. λ ∈ RNn denotes a free variable to affect magnitude and direction of the
structural force, where Nn ≥ 5 is the number of independent bases of the null space. The
dimension of the controllable force space is dim(colspan(G(JhM)−T)) ≤ 4. The remaining
Cartesian force is not controllable though it may be compensated by structural force.

A general analytical formulation of the feasible space of object motion is challenging
under the unknown structural force and the non-neglectable rolling effect. Therefore, this
section only demonstrates the manipulation performance on trivial directions by fixing the
spread motor (Fig. 8.17), since the spread motor provides limited contribution for object
manipulation. Besides the feasible space of motion, RMC has to address undesired prop-

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 120

erties of the hand-object system. These undesired properties include: 1) force estimation
error, 2) high friction in drivetrain, 3) various uncertainties, and 4) noise of sensors. Firstly,
the normal contact force (f i

z) estimation from tactile sensors generally smaller than ground
truth, causing f i

x calculated from (8.19) significantly larger than real value, as shown in
Fig. 8.19(Bottom). Secondly, the contact force is assumed to be tracked instantly, while
the high friction in the drivetrain compromises the performance of force tracking control
(Fig. 8.16) and introduces unmodeled dynamics to RMC. Thirdly, there are various uncer-
tainties including 31% mass uncertainty, center of mass uncertainty (∼ 0.01 m), and tactile
uncertainty (position ∼ 1.5 mm and orientation ∼ 0.2 rad). These uncertainties may af-
fect the stability and performance of the closed loop system. Lastly, the controller may be
sensitive to the noises from vision, tactile sensors and strain gauge torque sensors.

Figure 8.17 illustrates the tracking performance to a fixed position (0,−0.02, 0.175) m
and rotation (0, 0, 0) rad3. The hand started from fully open state and gradually closed
three fingers until contacting with the object (Fig. 8.17(a)), after which RMC generated
contact force command for low-level force tracking controller. The force drove the object
to move towards the target pose, and the pose error of this time step was fed to RMC for
force generation of the next time step, as shown in Fig. 8.17(b-e). The object converged
to non-zero pose error within 5 secs under the aforementioned undesired properties. The
robustness of the grasp to external disturbances is further demonstrated in Fig. 8.17(f-h).

Figure 8.18: Pose error profile of fixed pose tracking with RMC.

Figure 8.18 and Fig. 8.19 show the pose error and the corresponding contact force profile
of the fixed pose tracking. RMC starts at 15.5 s and the force tracking controller interacts

3ZYX Euler angle is used to represent rotation.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 121

with object to track the desired object pose. The actual force exhibits high frequency
oscillation during the tracking due to the effect of excessive nonlinear friction in low-speed
motion. Consequently, the pose error exhibits certain level of oscillation. Nevertheless, the
tracking errors converge to their minimum values after 5 secs. The robustness test starts at
26 s by manually exerting force disturbance (∼ 1.5 N) to rotate object around Z axis and
push it along Y axis, as shown in snapshots Fig. 8.17(fg) and in force profile Fig. 8.19. The
RMC algorithm is able to comply with excessive disturbance to avoid damage of fingers while
maintaining the stability of the object. There are small oscillations in Y, Z and yaw directions
caused by the compliance of the closed-loop system, as shown in 26 ∼ 41 s of Fig. 8.18. Notice
that the pose error cannot converge to zero since the grasp is not manipulable and the target
grasp is not in the feasible space of object motion with the current initial configuration.

Figure 8.19: Force profile of fixed pose tracking with RMC.

Comparison of Different Methods The performance of RMC was compared with mod-
ified impedance control (MIC) in Chapter 7 using a fixed pose tracking with target posi-
tion 0, 0.03, 0.16 m and rotation 0, 0, 0 rad. For MIC implementation, we used parameters
Kd = diag([50, 50, 50, 2.5, 2.5, 2.5]); Id = diag([50, 50, 50, 1.0, 1.0, 5.0]). Both RMC and MIC
ran for 4 times. The snapshots of both methods are shown in Fig. 8.20. The pose error
profiles for MIC and RMC are shown in Fig. 8.21 and Fig. 8.22. The shaded areas represent
error variations and quantified by standard deviation, and the bold curves represent aver-
age error values. With the aforementioned undesired properties of hand-object system, the
grasps with MIC cannot maintain firm contacts with object and exhibit large variations in
both Y and pitch directions, as shown in Fig. 8.20(Top). On the other hand, the grasps with

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 122

RMC are able to maintain firm contacts and perform consistently under all undesired prop-
erties including force estimation error, nonlinear friction, dynamics uncertainties and sensor
noises, as shown in Fig. 8.20(Bottom). Both MIC and RMC suffer from the reachability
issue caused by the hand manipulability.

Figure 8.20: Snapshots of fixed pose tracking with (Above) MIC and (Bottom) RMC.

Figure 8.21: Fixed pose tracking error with MIC.

Desired Trajectory Tracking Finally, we demonstrate the performance of RMC on
tracking a desired trajectory that is within the feasibility space of object motion. With-
out considering the spread motion, the desired trajectory was pre-recorded during tracking

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 123

Figure 8.22: Fixed pose tracking error with RMC.

to fixed position (0, 0.03, 0.16) m and rotation (0, 0, 0) rad (Fig. 8.22), though it could be
computed analytically given the initial contacts. Figure 8.23 and Fig. 8.24 illustrate the ex-
ecution snapshots and the error profile for the trajectory tracking. RMC tracked the target
motion in Y and Z directions and maintained a firm grasp to keep the stability of other
directions. It can be seen that the desired motion on Y axis can be accurately tracked,
though the Z direction exhibit 0.005 m error. Nevertheless, the error is much smaller than
fixed-pose tracking in Fig. 8.22 (0.015 m). The robustness of the proposed algorithm to
external disturbances is demonstrated at last from 31 ∼ 35 s. Similar with fixed pose track-
ing in Fig. 8.18, RMC is able to comply with the external disturbance to avoid excessive
large contact force while maintaining the firm grasp without losing the stability, as shown
in 31 ∼ 35 s of Fig. 8.24.

8.7 Chapter Summary

This chapter proposed a robust manipulation controller (RMC), which includes a robust
controller and a manipulation controller, to achieve dexterous manipulation under various
uncertainties and external disturbances. Feedback linearization was applied to reduce the
nonlinearities of the composite hand-object system. By utilizing the structures of the un-
certainties, the proposed robust controller can achieve faster convergence and tolerate more
uncertainties compared with other methods based on disturbance observer and modified
impedance controller (MIC) from Chapter 7. RMC skipped complicated contact modeling,
and was able to regulate contact force and prevent slippage. Simulation verified that the

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 124

Figure 8.23: Snapshot of the feasible reference tracking with RMC.

proposed RMC is robust to various uncertainties including dynamics, center of mass, tactile
uncertainties. Moreover, it did not require joint/object velocity measurement and was able
to achieve fast tracking performance. Further experiments were performed on a Barrett-
Hand BH8-282 with minor adaptations of the algorithm. The experiment verified that the
proposed RMC is able to manipulate objects to different target poses robustly and stably
under various undesired properties of the hand-object system.

CHAPTER 8. ROBUST DEXTEROUS MANIPULATION UNDER VARIOUS
UNCERTAINTIES 125

Figure 8.24: Error profile of the feasible reference tracking with RMC.

126

Chapter 9

Finger Gaits Planning for Robust
Dexterous Manipulation

9.1 Introduction

Chapter 8 introduced a robust manipulation controller (RMC) to manipulate objects and
track the desired trajectories of the objects within the workspace of the hand. To perform
long-range complex manipulations, the robotic hand may have to change its grasping status
by relocating fingers during the manipulation, which gives the hand more dexterity and
robustness. Such strategy is called finger gaits planning. However, the optimization of the
finger gaiting under complicated grasp quality metrics is computationally expensive [6]. The
optimization searches optimal contact points on a nonlinear object surface by maximizing
object stability and hand manipulability metrics [69]. These two metrics are represented
in different spaces, and associated by a high degree of freedoms (DOFs) nonlinear forward
kinematics. The optimization becomes more challenging when the object 3D surface model
is not available.

As a result, problems related to dexterous manipulation and finger gaits planning have
received significant attention. The challenges of dexterous manipulation and finger gaiting
were summarized in [6], namely, the analysis and control of hybrid systems during gaits
planning, and the optimization of the plans. A task-specific finger gaiting policy was trained
in [2] by the covariance matrix adaptation method, given the goal states of objects. However,
the learned policies cannot be adapted to other objects and tasks. A high-speed hand and a
high-speed vision system were applied in [33] to perform dynamic re-grasping. However, the
object model should be precisely known, and the presented success rate (35%) is not suitable
for many applications. Impedance parameters were learned from human demonstration for
robust grasping and dexterous manipulation in [51]. A tangle topology was used in [101]
to reproduce object pose from learned human demo. However, the object gravity is not
considered during their gaits changing process. A set of controllers is used in [75] to realize
unknown object grasping by sliding on the surface to maximize grasp stability. The unknown

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 127

surface of the object was explored in [76, 68] by designing a global re-grasping planner and
searching local optimal contact points. However, predefined finger gaits are used in these
approaches, and the exploration of local optima does not incorporate necessary constraints,
such as joint velocity and acceleration limitations. As a result, these approaches tend to be
slow in re-grasping and manipulation, and the predefined finger gaits might be inapplicable
to other objects and robotic hands. A sampling-based method was proposed in [106] to
plan finger gaits. In [68], a contact-invariant optimization method was used to compute
the states of the hand and the object, given the high-level goals. These approaches are not
computationally efficient for real-time finger gaits planning.

In this chapter, a dual-stage optimization based planner is developed for real-time robust
finger gaits planning under the object and contact uncertainties. The dual-stage planner
consists of a finger gaits planner and a robust manipulation controller (RMC) in Chapter 8.
To achieve real-time computation, the finger gaits planner is formulated in the velocity level,
instead of the position level; formulation in the position level results in a complicated non-
linear constrained optimization problem. At each time step, the optimal joint velocities are
computed to improve the hand manipulability as well as the object grasp quality, and the
computed joint velocities are fed into motors by a velocity-force controller. The proposed
RMC is formulated as a robust control and a contact force optimization. Feedback lineariza-
tion and μ-synthesis are combined for the robust controller design to deal with nonlinearities,
dynamics uncertainties and external disturbances, as introduced in Chapter 8.

The contributions of this chapter include: 1) The velocity-level finger gaits planner is
cast into a linear programming (LP), which is computationally efficient and can be solved in
real-time (< 1 ms). Furthermore, the velocity-level gaits planning incorporates joint kine-
matic constraints, which makes the generated motions feasible. 2) The two-level optimization
based planner is robust to different types of uncertainties as described in Chapter 8. The
velocity-level finger gaits planner utilizes velocity-force control to detect the object surface
and searches motions in tangent space. Moreover, RMC can handle 50% mass and 80%
moment of inertia uncertainties, (10, 10, 15) mm COM deviations and (0.3, 0.3, 0.3) rad prin-
cipal axes variations, robust to 10 times differences on stiffness, and withstand (5, 5, 5) mm
contact position and (0.3, 0.3, 0.3) orientation variations. 3) The proposed dual-stage opti-
mization based planner reduces the cost of the dexterous hand. To be more specific, it does
not require precise 3D reconstruction for exact object surface model, and high resolution
encoder or accelerometer for velocity measurement. The efficacy of the proposed controller
is verified by simulations. The video demo is available at [102].

The remainder of this chapter is organized as follows. Section 9.2 shows the overall
dual-stage optimization based planner framework. Section 9.3 introduces the finger gaits
planner. The design of robust manipulation controller is presented in Chapter 8. Section 9.4
shows simulation results on two robotic hands with different fingers and DOFs. Section 9.5
summarizes the chapter.

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 128

Robust

Manipulation

Controller Hand/Object

Interaction

Free finger index Velocity Level

Gait Planner

Grasp Quality

Analysis
Contact indices

Reference

Joint angle/Contact position/Object pose/Normal contact force

Torque Tracking

Controller

Figure 9.1: The general framework of the proposed optimization based planner.

9.2 Dual-Stage Manipulation and Gaiting Framework

Figure 9.1 shows the proposed dual-stage optimization based planner framework. First, grasp
quality analysis is conducted by combining hand manipulability and object grasp quality,
and the free finger index k is chosen to change gait once the overall quality drops below a
predefined threshold. A velocity-level finger gaits planner is evoked by this event, and the
planner generates the torque command τdes,k to drive the selected finger towards the better
quality region. The remaining fingers are controlled by RMC in Chapter 8 to generate
desired torque {τdes,j}j 	=k, to manipulate the object stably and track the reference motion of
the object, as shown in Fig. 9.1. If the overall quality is above the threshold, all fingers will
be controlled by RMC. The detailed introduction of RMC is in Chapter 8.

A joint level torque tracking controller is used to track the desired torque command

{τdes, j}Nfinger

j=1 , where Nfinger denotes the number of fingers. The torque tracking controller
uses a PID scheme and runs at a higher frequency, in comparison with the finger gaits
planner and the robust manipulation controller (500 Hz).

9.3 Real-Time Finger Gaits Planning

Grasp Quality Analysis

Grasp quality has been well explored in [69, 79]. It is desired that both hand manipulability
and object grasp quality are considered during the finger gaits planning. The hand manipu-
lability describes the ability for a hand to manipulate the object to realize arbitrary object
motions. The object grasp quality describes the capacity to resist external disturbances given
a group of contact points on the object. This chapter adopts a quality metric in [54] to rep-

resent the hand manipulability Qh: Qh = −0.5

Nfinger

j=1

Njoint

i=1

�
(qij − q̄ij)/(q

i
max,j − qimin,j)

�2
,

where qij is the i-th joint angle of the j-th finger, qimin,j and qimax,j are the limits of qij, q̄
i
j =

(qimax,j+qimin,j)/2 is the middle position of the corresponding joint, Njoint is the number of joints
per finger. The object grasp qualityQo is represented as: Qo = 2Area ({pj}j∈Ic , proj(pk)) [91],
where Ic is the set of indices of all fingertips that are in contact with the object. pj is the

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 129

contact position in Cartesian space for the j-th fingertip. proj(pk) denotes the projection
operation of pk onto the plane specified by {pj}j∈Ic .

The overall quality Q can be obtained by combining Qo and Qh:

Q = w1Qo + w2Qh (9.1)

where wi > 0 is the weight for the corresponding term.
Once the overall grasp quality Q drops below a threshold, the finger gaits should be

replanned to adjust contact points on the object. It is observed that humans tend to relocate
their fingers one by one during the finger gaiting. This idea is adopted and the finger gaits
are sequentially planned. Thus, the proposed algorithm will compare all the fingers and
choose one of them to initialize finger gaits planning, if all fingertips are in static contacts and
Q < δQ, where δQ is a threshold. The free finger is selected based on the finger manipulability
of itself and the grasp quality of the remaining fingers to the object. To be more specific,

the finger manipulability for the k-th finger is −0.5

Njoint

i=1

�
(qik − q̄ik)/(q

i
max,k − qimin,k)

�2
. The

grasp quality of remaining fingers to the object is the area of convex hull spanned by the
remaining fingertips. The candidate free finger for gaiting is the one with small finger
manipulability and large remaining grasp quality. If there is already one free finger that are
not in contact with the object, that finger will continue its gaiting.

In this section, the related position-level finger gaits planner is first presented; then the
velocity-level finger gaits planner is proposed to resolve the problems in the position-based
planner.

Position-Level Finger Gaits Planning

Position-level finger gaits planner consists of a contact optimization and a trajectory plan-
ning. The contact optimization searches an optimal contact point to maximize the overall
grasp quality (9.1), and the trajectory planning generates trajectories to relocate the finger
to the optimal contact point. The contact optimization can be formulated in the following
form:

max
pk,qk

Q (9.2a)

s.t. pk ∈ ∂O (9.2b)

�pk − po� ≤ � (9.2c)

pk = FK(qk) (9.2d)

ql,k ≤ qk ≤ qu,k (9.2e)

Constraint (9.2b) indicates that the fingertip position pk of the free finger k should be
on the surface of object ∂O. Constraint (9.2c) means that the searching region should be
constrained in certain region � from original position po to keep the stability of the object.
Constraint (9.2d) is the forward kinematics of the finger. Constraint (9.2e) means that the

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 130

joint space searching should be in the feasible region. After finding the optimal contact
point, the trajectory planning algorithm is required to generate a feasible trajectory.

The position-level finger gaits planning has the following drawbacks: First, the problem
has nonlinear equality constraints. Therefore, it is difficult for real-time computation. In
addition, this method requires a trajectory planning to avoid collision with the object and
reach the planed optimal point. Moreover, the trajectory planning should consider the
collision avoidance. Furthermore, the equality constraint (9.2b) corresponding to object
surface is usually unknown in advance. Lastly, the contact optimization (9.2) uses current
contacts {pj}j∈Ic to find the optima, while {pj}j∈Ic actually keep moving during the contact
optimization, trajectory planning and execution. With all aforementioned issues, an efficient
velocity-level gaits planner is proposed below.

Velocity-Level Finger Gaits Planning

The task of the finger gaits planner is to generate commands to change the contact location
of the free finger, to achieve better object grasp quality and finger manipulability in real
time. However, searching contact position by maximizing the quality (9.1) is challenging.
First, the search of pk should be conducted on the surface of the object, and the formulation
of the object surface requires 3D reconstruction and surface modeling. Second, the searching
of qk should be constrained within the joint limits, and qk is coupled with pk by forward
kinematics. Third, after finding the optimal contact point, a trajectory planning algorithm
is required to generate a feasible trajectory. In our previous work [22], a velocity level finger
gaits planner is proposed to overcome the aforementioned challenges.

In this planner, the contact optimization is modified into a short-term optimization. To
be more specific, rather than finding an optimal contact point, an optimal moving velocity of
the fingertip of the free finger is calculated at each time step, and the finger is actuated by a
velocity-force controller to achieve that velocity. Formally, instead of optimizing Q in (9.1),
we optimize Q̇ with joint velocity of the k-th finger q̇k as the decision variable. The solution
q̇des,k is used to control the robotic hand in each time step.

The intuition behind it is the Taylor series expansion. Q is a function of states {qk, pk},
and the states are the functions of time t. Therefore, Q is a function of t. By this interpre-
tation, Q in time instant t+ Ts can be written as:

Q(t+ Ts) ≈ Q(t) + Q̇(t)Ts (9.3)

where Ts is the time step. In this equation, higher order terms have been omitted, because
Ts is usually a small period. Therefore, designing control policy to maximize Q(t + Ts) is
equivalent to maximizing Q̇(t).

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 131

With the short term approximation, Q̇ becomes:

Q̇ = w1Q̇o + w2Q̇h

Q̇o = �pj2 − pj3�2nT
j1
vpk

Q̇h =

Njoint�

i=1

�
q̄ik − qik

(qimax,k − qimin,k)
2
q̇ik

� (9.4)

We assume that {pj}j∈Ic = {pj1 , pj2 , pj3}, nj1 is a normal vector of line segment pj2pj3 in
the plane specified by {pj}j∈Ic , and vpk is the velocity of contact point pk. q̇

i
k is joint velocity

of the i-th joint for the k-th finger. In this optimization, the states vpk and q̇k in Q̇o and Q̇h

are coupled linearly by vpk = J(qk)q̇k, where J(qk) is the Jacobian matrix of the k-th finger.
By plugging in the coupled term, Q̇ becomes:

Q̇ = w1�pj2 − pj3�2nT
j1
Jq̇k + w2

Njoint�

i=1

cik
q̄ik − qik

(qimax,k − qimin,k)
2
q̇ik (9.5)

cik is a weighting function added to (9.5) to address influence of joint limits:

cik =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ln(
q̄ik−qimin,k−qithres

qik−qimin,k
) + 1, qik − q̄ik < −qithres

1, |qik − q̄ik| ≤ qithres

ln(
qimax,k−q̄ik−qithres

qimax,k−qik
) + 1, qik − q̄ik > qithres

where qithres is a threshold where the weighting should start to increase. In the meantime,
constraints (9.2b) and (9.2d) become nT

pk
J(qk)q̇k = 0, where npk is the surface normal of the

object at pk, and q̇k = [q̇1k, ..., q̇
Njoint

k]T . The surface normal can be inferred by the tactile
sensor on the fingertip. The constraint (9.2c) is eliminated because we are working on
short-term optimization, and the optimization would be solved in each time step.

With above analysis, a new optimization can be formulated to approximate the original
contact optimization:

q̇des,k = argmax
q̇k

Q̇ (9.6a)

s.t. q̇min,k ≤ q̇k ≤ q̇max,k (9.6b)

nT
pk
J(qk)q̇k = 0 (9.6c)

�q̇k − q̇des,prev�∞ ≤ σ (9.6d)

where constraint (9.6b) means that the desired joint velocity q̇k should be bounded in
[q̇min,k, q̇max,k]. Constraint (9.6c) indicates that pk must move perpendicular to current sur-
face normal npk . Constraint (9.6d) limits the joint acceleration by σ/Ts, where Ts denotes

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 132

the sampling time of the system. q̇des,prev is the desired joint velocity in previous time step.
The optimization (9.6) is a linear programming, which can be solved in real-time.

After obtaining the desired joint velocity q̇des,k by solving (9.6), a velocity-force controller
is implemented to calculate the desired torque for the k-th finger:

τdes,k =Kv q̇des,k +KfJ(qk)
T (fn

des − fn
act,k) (9.7)

where τdes,k and fn
des are the desired torque and desired contact force in the normal direction.

fn
des is set to be a constant small force during finger gaiting. fn

act,k is the actual contact
force in normal direction and can be measured by 1D tactile sensor. The force component
KfJ(qk)

T (fn
des − fn

act,k) in (9.7) attempts to maintain the contact between the fingertip and
the surface, which makes the normal vector npk measured from the tactile sensor updated.

The velocity-level gaits planner that composed of (9.6) and (9.7) has several advantages.
First, the proposed planner is computationally efficient. The optimization (9.6) is an LP
that can be solved in each time step. Second, the 3D object model is not required. Instead,
1D tactile sensors are employed to detect contact points on the hand and infer the surface
normals by the known fingertip structures, and the sensor update can be accomplished by
the force component in the velocity-force controller.

The grasp quality is expected to be improved at the beginning of gaits planning. The
velocity-level gaits planner can be terminated when there is little grasp quality improvement
(i.e. Q̇ < δ, where δ is a small positive number), or when the grasp quality is above the
threshold (i.e. Q > δQ).

Similarities Between Position-Level and Velocity-Level Planners

This section shows the similarity of the performance between the velocity-level planner (9.6)
and (9.7) and one step of (9.2) if solved by gradient projection method ([81]).

An abbreviated form of (9.2) is formulated for notational convenience:

max
x

Q s.t. h(x) = 0, g(x) ≤ 0 (9.8)

where x =
�
cTk , q

T
k

�T
, h(x) = 0 represents the equality constraints (9.2b) and (9.2d), and

g(x) ≤ 0 represents inequality constraints (9.2c) and (9.2e).
In each step of the gradient projection method, the search direction d is found by pro-

jecting ∇Q onto the tangent space of equality constraints T = {y|∇hTy = 0}, as shown
in Fig. 9.2(a). Then, an iterative technique is employed to project the points along d onto
h(x) = 0, until the projected point xk+1 lies in the set {x|h(x) = 0, g(x) ≤ 0}.

Instead of projecting the gradient into the tangent space, the proposed planner searches
optimal direction vck,des in tangent space by LP (9.6) with consideration of the feasibility
of the motion (9.6d) and (9.6b), as shown in Fig. 9.2(b). Moreover, the velocity-force con-
troller (9.7) is a physical actualization of projecting ŷ onto h(x) = 0 by maintaining the
contact force between the fingertip and the surface. As the LP (9.6) is solved in each time
step Ts, the search step Δxk = xk+1 − xk is quite small. Thus, the planned q̇des,k in (9.6) is
usually smooth.

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 133

� ���� ��
��� ���

Figure 9.2: Comparison of the gradient projection method and the proposed planner.

Finger Gaiting with Jump Control

The above finger gaits planner achieves short-range sliding along the convex or concave object
surfaces. However, the finger gaits planner would not able to slide through the sharp edges
or hollows where the curvatures are excessive large, since the normal direction estimation
from tactile sensors might be noisy due to the possible multiple-point contact conditions.

To avoid the failure of the finger gaits planner around the sharp edge or hollows, we
observe the human behavior and propose a strategy called short-range jump control. First,
the rough pose of the edge is estimated either by prior-knowledge, vision or tactile sensor.
The jump is triggered by check whether 1) the distance between the fingertip and edge is
within certain threshold, and 2) the desired velocity of the fingertip generated by the finger
gaiting is towards the edge. Once the jump is triggered, the jump controller would choose
a reference point and jump around the point, as shown in Fig. 9.3. In this figure, A and S
denote the reference jump point and the fingertip. n and t are normal and tangent vectors
computed from the current configuration. The red dash circle with radius rthres is the desired
path for jumping. A LP is applied to generate velocity command for the fingertip:

max
vt,q̇k

vt (9.9a)

s.t. Jv,kq̇k = tvt + nkn(rthres − �AS�) (9.9b)

q̇min,k ≤ q̇k ≤ q̇max,k (9.9c)

vt ≥ 0 (9.9d)

where vt is the fingertip velocity in tangent direction t, and �AS� is the current distance
between the fingertip and the reference point. The (9.9) aims to maximize the moving
speed along the tangent direction. Constraint (9.9b) regulates the fingertip along the de-
sired circular path to avoid unexpected collision with the edge. The object velocity is not
included due to the measurement noise, and the assumption that the object moves slow.
Constraints (9.9c)(9.9d) ensure that the jump is feasible and progressive.

The desired joint velocity q̇des,k generated from (9.9) is converted into the joint torque by
τdes,k = Kv q̇des,k. During the jump, the finger gaiting is bypassed. The jump control is reset

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 134

�
� �

�

�

��

�����

�

�

Figure 9.3: Illustration of jump control strategy on sharp edges.

��� ���
��

��

��

��

��

��

Figure 9.4: Two hand models used in the simulation.

once the fingertip recontact with the object. rthres is small value, thus the grasp quality (9.1)
is assumed not effected by the contact change due to the short-range jump control.

9.4 Simulation Study

In this section, simulation results are presented to verify the effectiveness of the proposed
dual-stage optimization based planner. The simulation video is available at [102].

Simulation Setup

Same as Chapter 8, the algorithm was implemented in Mujoco physical engine [96]. The
simulation and planning time steps were set to 0.5 ms and 2 ms, respectively. Our platform
was a desktop with Intel Core i7-6700K CPU and 32 GB RAM, running Windows 10 op-
erating system. The hand models used in the simulation are shown in Fig. 9.4. Both the
three-finger hand and the four-finger hand are presented to demonstrate the effectiveness of
the algorithm on different types of hands. The four-finger hand is set up with twelve DOFs

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 135

and each finger has three revolute joints J1, J2, and J3, as shown in Fig. 9.4(a). The joint
angles of J1, J2 and J3 are constrained in [−10◦, 135◦], [−45◦, 45◦] and [−10◦, 170◦], respec-
tively. The three-finger hand is set up with nine DOFs and each finger has three revolute
joints J1, J2, and J3, as shown in Fig. 9.4(b), and each joint is constrained in [−90◦, 90◦].
Two hands are equipped with joint encoders for joint angle feedback, motor torque sensors
for joint torque feedback, and one-dimensional distributive tactile sensors for normal force
feedback and contact pose estimation. To mimic an actual real-world finger, the density of
each finger link is set to 10000 Kg/m3. The manipulated objects for four-finger hand and
three-finger hand are approximately 0.5 Kg and 0.3 Kg. The 3D mesh models of objects are
unknown to the planner. Rather, a vision system can be employed to obtain the pose of the
object by tracking the features on it. Currently, the object pose is obtained from Mujoco.
In future real world experiments, approach in [21] can be employed to estimate the pose of
objects.

Parameter Lists

The parameter values for the LP (9.6) are: w1 = 0.99, w2 = 0.01. qithres = 0.5(qimax,k −
qimin,k)/2. q̇min,k = −1 rad/s, q̇max,k = 1 rad/s, σ = 0.002 rad/s, δ = 10−5. The parameter
values for velocity-force controller are: Kv = 0.1 ∼ 0.25 × diag([1, 1, 1]), Kf = 1.5 ∼ 3.4 ×
diag([1, 1, 1]). The planner time step Ts = 2 ms, and the simulation time step ts = 0.5 ms.

The parameters of RMC are the same as Chapter 8.

Simulation Results

Finger gaiting on smooth surface under uncertainties

The proposed finger gaits planning and the RMC algorithm are validated by a lifting and
rotating task. The desired object motion is to move along Z-axis by 11 mm, rotate contin-
uously around Z-axis with 0.2 rad/s, and rotate sinusoidally around Y-axis with 0.4 rad/s.
The manipulation surface of the object is smooth. The following uncertainties are included
in every simulation of this section: 1) object dynamics uncertainty: The object has 20%
mass and 50% moment of inertia uncertainties; 2) COM uncertainty: the COM position has
(3, 3,−10) mm offset and principal axes has (0.1, 0.1, 0.1) rad offset represented by Euler an-
gle; 3) tactile uncertainty: the contacts measured by tactile sensors have (2, 2, 2) mm position
offset and (0.05, 0.05, 0.05) rad orientation offset, plus additional noises; 4) contact dynam-
ics uncertainty: the planner uses Coulomb friction and point contact with friction (PCWF)
model, while the contacts in the simulator also contain torsional friction and rolling friction.
The stiffness kc = 15783 and damping bc = 253.

The performances of manipulating a cylindrical object without/with the proposed finger
gaits planner are presented in Fig. 9.5. The initial and the current pose of the object are
shown by white and red arrows. Without the proposed finger gaits planner, the object can not
be rotated over 90◦ due to the decreasing finger manipulability, as shown in Fig. 9.5 (Top).

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 136

Figure 9.5: A lift and rotation task without (Top) and with (Bottom) the finger gaits planner.

0 5 10 15

Time (second)

-0.01

0

0.01

T
ra

n
s
la

ti
o

n
 E

rr
o

r
(m

e
te

r) Position Tracking Error

X direction

Y direction

Z direction (Gravity)

0 5 10 15

Time (second)

-0.1

0

0.1

O
ri
e

n
ta

ti
o

n
 E

rr
o

r
(r

a
d

) Orientation Tracking Error

Roll

Pitch

Yaw

Figure 9.6: Tracking errors for the dual-stage optimization based planner.

With the proposed finger gaits planner, the object can be rotated continuously with the
desired velocity, as shown in Fig. 9.5 (Bottom). The finger gaits planner ensures the grasp
quality (9.6) is kept above a threshold, and the RMC guarantees robust stability and robust
performance. The computation time for solving the (9.6) and (7.10) is less than 1 ms for
each planning step.

Figure 9.6 shows the pose tracking errors during the lifting and rotation. RMC is able to
drive the object to track the desired motion in 0 ∼ 2 secs. The finger gaiting is triggered at
2 secs since the grasp quality drops below a threshold. The pose errors do not converge to
zero due to the disturbance introduced by contact allocating. The maximum position error

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 137

0 2 4 6 8 10 12
-5

0

5
F

or
ce

(N
) Perturb Force and Position Errors

X direction
Y direction
Z direction (Gravity)

0 2 4 6 8 10 12
-0.02

0

0.02

E
rr

or
(m

)

X direction
Y direction
Z direction (Gravity)

0 2 4 6 8 10 12
-0.2

0

0.2

T
or

qu
e(

N
m

)

Perturb Torque and Orientation Errors

Around X
Around Y
Around Z

0 2 4 6 8 10 12

Time (second)

-0.2

0

0.2

E
rr

or
(r

ad
)

Roll
Pitch
Yaw

Figure 9.7: The response of two-level planner under external disturbances.

is 1.6 mm in x direction, and the maximum orientation error is 0.019 rad (1.09◦) around z
axis.

The disturbance rejection of the proposed two-level planner is shown in Fig. 9.7. Be-
sides the disturbances from various uncertainties, external perturbation force/torque are
exerted to the object. The force perturbation and the associated position errors are shown
in Fig. 9.7(a)(b), and the torque perturbation and the associated orientation errors are shown
in Fig. 9.7(c)(d). The system can resist at least 5 N force and 0.2 Nm torque in different
directions without going unstable.

The robustness of the proposed two-level planner to different shapes is demonstrated by
lifting and rotating an ellipsoid, as shown in Fig. 9.8. Figure. 9.8(top) is the top view, and
Fig. 9.8(bottom) is the lateral view. The mass of the ellipsoid is 0.34 Kg. An identical two-
level planner (finger gaits planner + RMC) is used for the ellipsoid manipulation, though
the ellipsoid has different geometries and dynamics with cylinder.

The quality rate Q̇ in (9.6) during a typical contact relocation period are shown in
Fig. 9.9. The rate is above the δ, which means that the proposed finger gaits planner is able
to continuously improve the grasp quality.

The robustness of RMC to different contact conditions has been presented in Section 8.5.
However, RMC requires a conservative pyramid approximation of the friction cone specified
by the Coulomb friction coefficient μc. However, this approximation might be too conser-
vative if the contact dynamics are uncertain. One potential solution is to detect slippage
and adaptively adjust μc used in RMC, and slippage detection can be difficult by 1D tactile
sensor [29]. In this chapter, the finger gaits planner is employed to relocate the slipping
finger if the quality drops below a threshold, instead of developing complex algorithm to
prevent slippage. Besides other uncertainties, the nominal Coulomb friction coefficient μ̄c in

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 138

Figure 9.8: Lift and rotation task for ellipsoid using an identical planner as cylinder.

8.05 8.1 8.15 8.2 8.25 8.3 8.35 8.4

Time (second)

0.02

0.04

0.06

0.08

Q
ua

lit
y

R
at

e

Figure 9.9: Optimal quality rate from (9.6) in a typical contact relocation period.

the planner is set as 0.5236, while the actual μc = 0.4. The unexpected slippage of the fin-
gers is compensated by the finger gaits planner. The tracking errors of the two-level planner
under friction overestimation are shown in Fig. 9.10.

Finger gaiting of three-finger hand

Finally, we demonstrate the proposed two-level planner on different hands and tasks. A box
flipping task using a three-finger hand shown in Fig. 9.4(b) is illustrated. The desired flipping
speed is 0.5 rad/s. The box to be manipulated has 20% mass and 50% MoI uncertainties.
Compared with above simulations, the box has sharp edge, and the task cannot be finished
without changing manipulation surfaces. Therefore, a jump controller is desired to drive

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 139

0 1 2 3 4 5 6 7 8 9 10

Time (second)

-0.01

0

0.01

T
ra

ns
la

tio
n

E
rr

or
 (

m
et

er
)

Position Tracking Error
X direction
Y direction
Z direction (Gravity)

0 1 2 3 4 5 6 7 8 9 10

Time (second)

-0.05

0

0.05

O
rie

nt
at

io
n

E
rr

or
 (

ra
d) Orientation Tracking Error

Roll
Pitch
Yaw

Figure 9.10: Tracking errors under friction overestimation.

the middle finger through the edge, as shown in Fig. 9.11 and 9.12. Figure 9.11 shows the
snapshots of the box flipping process. The finger gaiting starts whenever losing contact or the
quality drops below the threshold, and the jumping starts from 1.78 secs and rotates along the
edge until contacting with the other surface. Compared with sliding, the re-contacting after
jumping results in larger disturbance, thus the pose tracking errors oscillate to some extent,
as shown in Fig. 9.12. The fingers on two sides manipulate the box by RMC. Notice though
RMC is not able to maintain the robust performance during jumping, since the remaining 6
DOFs cannot form force closure grasps and the box cannot track the desired pitch motion,
as shown in Fig. 9.12(b). The manipulation employs point contact with friction (PCWF)
model, while the contact in Mujoco is set up with both torsional friction and rolling friction.
The additional frictions act as a disturbance and the value is shown in Fig. 9.12(c).

9.5 Chapter Summary

This chapter proposed a two-level optimization based planner, which includes a velocity-
based finger gaits planner and a robust manipulation controller, to achieve real-time finger
gaiting under different types of uncertainties. The finger gaits planner searches optimal
velocities to improve the object grasp quality and the hand manipulability, rather than
directly finding optimal contact points by nonlinear programming methods. The proposed
planner is computationally efficient and can be solved in real-time. Besides, the planner
does not rely on precise 3D reconstruction for surface modeling and high resolution encoders
for velocity measurements. The presented two-level optimization based planner can handle
50% mass and 80% moment of inertia uncertainties of the object, robust to the friction

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 140

��� ��� ��� ��� ���

����

���� ���� ��� ��� �������

�

���� ���� �������� ����

Figure 9.11: Snapshots of box flipping using a three-finger hand.

overestimation and unexpected slippage, and address the complex dynamically critical tasks
such as box-flipping with low-DOF hands. Simulations showed that the proposed method
can achieve real-time finger gaiting, and realize long-range object motions that are infeasible
without the proposed finger gaits planner.

In the future, the authors would like to test the proposed method on more complex
objects such as non-convex ones, and perform experiments on a real world robotic hand.

CHAPTER 9. FINGER GAITS PLANNING FOR ROBUST DEXTEROUS
MANIPULATION 141

0 0.5 1 1.5 2 2.5 3
-0.01

0

0.01

e
t (

m
)

Pose Tracking Error and Disturbances from Side Fingers
X
Y
Z

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

e
o
 (

ra
d)

Roll
Pitch
Yaw

0 0.5 1 1.5 2 2.5 3

Time (second)

0

0.05

0.1

di
s (

N
m

)

Torque
Gaiting
Jumping

Figure 9.12: Tracking errors and the disturbance torque from sides fingers in box flipping.

142

Part III

Assembly

143

Chapter 10

Learning Industrial Assembly by
Guided-DDPG

10.1 Introduction

Chapter 2 ∼ 6 described the development of grasp planning algorithms to extend the dexter-
ity of industrial manipulators in kinematic level. Chapter 7 ∼ 9 described the development
of manipulation control algorithms to extend the dexterity in dynamic level. In this chap-
ter, the dexterity of the industrial manipulators will be further extended to skill level by
developing a learning framework for industrial assembly. Automatic precision assembly is
important for industrial manipulators to improve the efficiency and reduce the cost. Most
of the current assembly tasks rely on dedicated manual tuning to provide trajectories for
specific tasks, which requires intensive labors and is not robust to uncertainties. To reduce
the human involvement and increase the robustness to uncertainties, more researches are
focusing on learning the assembly skills.

There are three types of learning in Psychology [41]: classical conditioning, observational
learning and operant conditioning. The second and third types correspond to supervised
learning and reinforcement learning, respectively. The supervised learning is ideal when the
training data is sufficient. Practically, collecting data is inefficient under various uncertainties
of the environment. A Gaussian mixture model (GMM) is trained in [93] from human
demonstration to learn a peg hole insertion skill. The peg hole insertion task is simplified
by constraining the policy into planar motion and the trained policy is not adaptable to
different environments.

The reinforcement learning (RL) learns a sequence of optimal actions by exploring the
environment to maximize the expected reward. Different types of RL methods include the
direct policy gradient such as REINFORCE [103], Q-learning based methods such as deep
Q-learning (DQN) [66], as well as the actor-critic framework such as deep deterministic
policy gradient (DDPG) [55] or proximal policy optimization (PPO) [85]. These methods
are called model-free RL since the dynamics model is not used during exploration. Despite

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 144

lack of dynamics, the model-free RL has been successfully applied to assembly tasks [100,
39]. The model-free RL requires considerable data to explore the state/action space and
reconstruct the transitions of the environment. Consequently, it is less data-efficient and
time-efficient.

Model-based RL is proposed to increase the data efficiency [47, 48]. It fits dynamics
models and applies optimal control such as iterative linear quadratic regulator (iLQR) or
iterative linear quadratic Gaussian (iLQG) [94] to compute the optimal trajectories. The
exploration is conducted by adding random noise to the actions during the optimization.
Then the optimized trajectories are used to train a neural network policy in a supervised
manner. Compared with model-free RL, the model-based RL has larger exploit-exploration
ratio, thus explores narrower space and converges faster than the model-free RL. The per-
formance of the model-based RL depends on the behavior of the optimal controller (i.e.
supervisor), which in turn is effected by the accuracy of the local dynamics model. For
the rigid robot dynamics with force/torque as states, the dynamics model is less smooth1,
which makes the dynamics fitting not effective. Consequently, the model-based RL cannot
converge consistently. In practice, people usually use soft robotics model (Baxter, PR2) [48]
with position/velocity states by ignoring the force/torque feedback.

This chapter proposes a learning framework to train a more natural assembly policy
by incorporating both the force/torque and the positional feedback signals. The proposed
framework combines the model-based RL with the model-free actor-critic to learn the ma-
nipulation skills for precision assembly tasks. The model-based RL computes for the optimal
trajectories with both positional and force/torque feedback. The performance of the con-
troller might be affected by the smoothness of the local fitted dynamics model. To avoid
the problem of inconsistency or tedious parameter tuning of the optimal controller, a critic
network is introduced to learn the correct critic value (Q-value). Instead of training the
policy network by pure supervision, we train an actor network by combining the supervised
learning with the policy gradient. To accelerate the training efficiency of the critic network,
the Q-value from the optimal control is employed to train the critic network.

The contributions of this work are as follows. First, the optimal controller is able to
constrain the exploration space in safe region compared with the random exploration at the
first iterations of actor-critic methods. Secondly, the optimal controller is more data-efficient
when exploring in a narrower space and solving for the optimal trajectory mathematically.
Thirdly, the combined critic network is able to address the potential inconsistency and
instability of the optimal controller caused by the rigid robotics system and force/torque
feedback, and build up a ground truth critic for the policy network.

The remainder of this chapter is described as follows. The related work is stated in
Section 10.2, followed by a detailed explanation of the proposed learning framework in Sec-
tion 10.3. Simulation and experiment results are presented in Section 10.4. Section 10.5
concludes the chapter and proposes future works.

1The dynamics change dramatically as the trajectory slightly changes.

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 145

10.2 From Model-Free RL to Model-Based RL

The objective of an assembly task is to learn an optimal policy πθ(at|ot) to choose an action
at based on the current observation ot in order to maximize an expected reward:

min
πθ

Eτ∼πθ
(l(τ)), (10.1)

where θ is the parameterization of the policy, τ = {s0, a0, s1, a1, ..., sT , aT} is the trajectory,
πθ(τ) = p(s0)

 T
1 p(st|st−1, at−1)πθ(at|st), and l is the loss of the trajectory τ .

Equation (10.1) can be solved by optimization once a global dynamics p(xt|xt−1, ut−1)
is explicitly modeled. For a contact-rich complex manipulation task, the global dynamics
model is extremely difficult to obtain. Therefore, the assembly task either avoids using
dynamics [39] or fits the a linear dynamics model [93, 47, 48].

On one hand, the RL without dynamics requires excessively data to explore the space and
locate to the optimal policy due to the potential high-dimensionality of the action space. On
the other hand, the performance of the [47, 48] can be downgraded once the robotic system
is rigid or the force/torque feedback is included in the optimal controller.

We propose a learning framework that combines the actor-critic framework and optimal
control for efficient high-accuracy assembly. The optimal controller is adapted from the
model-based RL [47], while the actor-critic framework is modified from the DDPG algorithm.
These two algorithms will be briefly introduced below.

Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm collects sample data (sj, aj, sj+1, rj) from the replay buffer R and
trains a critic network Qφ and actor network uθ parameterized by φ and θ. More specifically,
the critic network is updated by:

φ ← argmin
φ

1

Ndd

Ndd�

j=1

(yj −Qφ(sj, aj))
2 ,

yj = rj + γQφ̂(sj+1, uθ̂(sj+1)),

(10.2)

where Ndd is the batch size for DDPG, φ̂, θ̂ are parameters of the target critic network and
target actor network, and γ is the discount for future reward.

The policy network is updated by:

θ ← argmax
θ

1

Ndd

Ndd�

j=1

Qφ̂(sj, uθ(sj)), (10.3)

where θ is the parameters for the policy network to be optimized. Policy gradient is applied
to update the parameters of the actor network:

θ ← θ + α
1

Ndd

Ndd�

j=1

∇aQ̂(s, a)|s=sj ,a=aj∇θuθ(s)|s=sj , (10.4)

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 146

where the α is the learning rate of the actor network.
The target networks are updated by

φ̂ ← δφ+ (1− δ)φ̂,

θ̂ ← δθ + (1− δ)θ̂,
(10.5)

where δ is the target update rate and is set to be small value (δ ≈ 0.01).

Guided Policy Search (GPS)

With the involvement of guiding distribution p(τ),Problem (10.1) can be rewritten as

min
πθ,p

Ep(l(τ)), s.t. p(τ) = πθ(τ). (10.6)

GPS solves (10.6) by alternatively minimizing the augmented Lagrangian with respect to
primal variables p, πθ and updating the Lagrangian multipliers λ. The augmented Lagrangian
for θ and p optimization are:

Lp(p, θ) = Ep(l(τ)) + λ (πθ(τ)− p(τ)) + νDKL (p(τ)�πθ(τ)) ,

Lθ(p, θ) = Ep(l(τ)) + λ (πθ(τ)− p(τ)) + νDKL (πθ(τ)�p(τ)) ,
(10.7)

where λ is the Lagrangian multiplier, ν is the penalty parameter for the violation of the
equality constraint, and DKL represents the KL-divergence. The optimization of primal
variable p is called trajectory optimization. It optimizes the guiding distribution p with
learned local dynamics. To assure the accuracy of dynamics fitting, the optimization is
constrained within the trust region �:

min
p

Lp(p, θ), s.t. DKL(p(τ)�p̂(τ)) ≤ �, (10.8)

where p̂ is the guiding distribution of the previous iteration. The Lagrangian of (10.8) is:

L(p) = Lp(p, θ) + η(DKL(p(τ)�p̂(τ))− �), (10.9)

where η is the Lagrangian multiplier for the constraint optimization. With the Gaussian
assumption of the dynamics, (10.9) is solved by iLQG [97]. To avoid large derivation from
the fitted dynamics, η is adapted by comparing the predicted KL-divergence with the actual
one.

The optimization of the policy parameters θ can be written as a supervised learning prob-
lem. With the Gaussian policy πθ(at|ot) = N (uθ(ot),Σ

π
t), we can rewrite Lθ(p, θ) in (10.7)

as:

Lθ(θ, p) =
1

2Nb

Nb,T�

i,t=1

Epi(st,ot)[tr
�
C−1

ti Σπ
t

�
− log|Σπ

t |+

(uθ(ot)− up
ti(st))

T C−1
ti (uθ(ot)− up

ti(st)) + 2λT
t uθ(ot)],

(10.10)

where pi(ut|st) ∼ N (up
ti(st), Cti) is the guiding distribution. Equation (10.10) contains the

decoupled form of the variance optimization and policy optimization. Refer [48] for more
details.

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 147

Figure 10.1: (a) Guided Policy Search (GPS). (b) deep deterministic policy gradient
(DDPG).

Comparison of GPS and DDPG

GPS decouples RL into a trajectory optimization (supervisor) and a supervised policy net-
work learning (learner), as shown in Fig. 10.1(a). The performance of the learner relies on
the quality of the supervisor. By fitting the dynamics from sampling data and computing
the supervisor with the optimal control, GPS is more efficient than the DDPG and many
other model-free RL algorithms. However, the performance of the learner would be compro-
mised if the system has high stiffness and has force/torque feedback as states due to the less
smooth dynamics and smaller trust region.

In comparison, DDPG uses rollout samples to jointly train the Q-network (critic) and
policy network (actor), as shown in Fig. 10.1(b). The critic gradually builds up the Q-
value from physical rollouts, and the Q-value is applied to train the actor network based on
policy gradient. The actor-critic framework provides more stable policy in the tasks with
non-smooth dynamics. These tasks are common in high precision industrial assembly where
the system has higher stiffness and contains force/torque feedback in the states. Despite
the reliable performance, the actor-critic framework is less data efficient due to the intensive
exploration, which is usually unnecessary since assembly tasks only requires exploration in
narrow trajectory space.

10.3 Guided-Deep Deterministic Policy Gradient

(Guided-DDPG)

Precision industrial assembly usually has large system stiffness in order to achieve precise
tracking performance and reduce the vibration. With large stiffness, small clearance and
force/torque feedback, both the model-free RL and model-based method cannot accomplish
the task efficiently and stably. In this chapter, we propose a learning framework that com-
bines the actor-critic with the model-based RL for high precision industrial assembly. The

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 148

Figure 10.2: Illustration of the proposed guided-DDPG.

framework is named as guided-deep deterministic policy gradient (guided-DDPG). Guided-
DDPG behaves more efficient than the actor-critic and more stable/reliable than the model-
based RL.

Figure 10.2 illustrates the proposed guided-DDPG algorithm. Due to the discontinuity of
the fitted dynamics in rigid precise systems, the trajectory optimization can have inconsistent
behavior or requires dedicated parameter tuning. Therefore, a pure supervised learning from
trajectory optimization cannot fulfill the task consistently. The actor-critic is incorporated to
the framework to address this issue. The trajectory optimization serves as a semi-supervisor
to train the actor-critic to establish the initial critic and constrain the network in narrow task
space. The involvement of the supervision will be reduced as the training progresses and the
critic network becomes more accurate, since the actor-critic exhibits superior performance
than the semi-supervisor.

To be more specific, the trajectory optimization (semi-supervisor) has the following form:

min
p

Ep(l(τ)), s.t. DKL(p(τ)�p̂θ(τ)) ≤ �, (10.11)

where p̂θ is set as the trajectory distribution generated by actor policy at the first sub-
iteration, and is set as the previous trajectory distribution p̂ for the successive Ntrajopt − 1
sub-iterations. Equation (10.11) is optimized by the dual:

max
η

{min
p

Ep(l(τ)) + η(DKL(p(τ)�p̂θ(τ))− �)}. (10.12)

The optimization of p is solved by LQG with fixed η and dynamics, and the optimization
of η is done heuristically: decrease η if DKL(p(τ)�p̂θ(τ)) < �, otherwise increase η. The trust
region � varies based on the expected improvement and actual one. � would be reduced once
the actual improvement is far smaller from the expected one, thus the network focuses on
penalizing the KL divergence from p̂θ(τ).

We collect the trajectory after Ntrajopt sub-iterations to replay buffer R1 for supervised
training of actor-critic nets, and feed all the sample data during Ntrajopt executions to replay

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 149

buffer R2. With the supervision from R1, the critic is trained by:

φ ← argmin
φ

1

Ndd

Ndd�

j=1

(yj −Qφ(sj, aj))
2 + wto

1

Nto

Nto�

i=1

�Qφ(si, ai)−Qto
i �2 (10.13)

where wto, Nto are the weight and batch size of the semi-supervisor, yj has the same form
as (10.2). (si, ai, Q

to
i) is the supervision data from R1, and (sj, aj, rj, sj+1) is the sample data

from R2.
The actor is trained by:

θ ← argmax
θ

1

Ndd

Ndd�

j=1

Qφ̂(sj, uθ(sj)) + wto
1

Nto

Nto�

i=1

�uθ(si)− ai�2 (10.14)

The supervision weight wto decays as the number of training rollouts Nroll increases. We
use wto =

c
Nroll+c

, where c is a constant to control the decay speed.
The guided-DDPG algorithm is summarized in Alg. 10. The critic and actor are initialized

in Line 2. Guided-DDPG runs for EP epochs in total. In each epoch, semi-supervisor is first
executed to update the trajectories for supervision. With the high stiffness, small clearance
and the force/torque feedback, the fitted dynamics (Line 7) is discontinuous and has small
trust region. Therefore, the trajectories generated from the semi-supervisor might be sub-
optimal. Nevertheless, they are sufficient to guide the initial training of the actor-critic.
The actor-critic is trained in Line (12 - 22) following the standard procedure of DDPG with
the modified objective function (Line (19)). The supervision weight wto is decreased as
the training progresses due to the superior performance of the actor-critic than the semi-
supervisor.

10.4 Simulations and Experiments

This section presents both the simulation and experimental results of the guided-DDPG to
verify the effectiveness of the proposed learning framework. The videos are available at [102].

To compare the performance of the guided-DDPG with other state-of-the-art RL algo-
rithms, we built up a simulation model using the Mujoco physics engine [96]. The host
computer we used was a desktop with 32 GB RAM, 4.0 GHz CPU and GTX 1070 GPU. A
6-axis UR5 robot model from universal robotics was used to perform the tasks. Two different
assembly tasks were simulated, the first one was the Lego brick insertion, and the second
one was the U-shape joint assembly, as shown in Fig. 10.3.

Parameter Lists

The number of the maximum epoch is set to EP = 100, initial number of rollouts for DDPG
and trajectory optimization were Nddpg = 21 and Ntrajopt = 3, respectively. To ensure

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 150

Algorithm 10 Guided-DDPG

1: input:EP,Nddpg, Ninc, Ntrajopt, Nroll = 0, R1/2 ← Φ

2: init: Qφ(s, a), uθ(s), set target nets φ̂ ← φ, θ̂ ← θ
3: for epoch = 0 : EP do
4: pprev ← uθ

5: for it = 0 : Ntrajopt do
6: S ← sample data(pprev), R2 ← R2 ∪ S
7: fdy ← fit dynamics(S)
8: p̂θ ← linearize policy(pprev,S)
9: p ← update trajectory(fdy, p̂θ), pprev ← p
10: end for
11: S ← sample data(p), R1 ← R1 ∪ S, R2 ← R2 ∪ S
12: for it = 0 : Nddpg do
13: Nex ← exploration noise()
14: s0 ← observe state(), wto =

c
c+Nroll++

15: for t = 0 : T do
16: at = uθ(st) +Nex(t), observe st+1, rt
17: R2 ← R2 ∪ (st, at, st+1, rt)
18: sample Nto, Ndd transitions from R1, R2

19: update critic and actor nets by (10.13) and (10.14)
20: update target nets by (10.5)
21: end for
22: end for
23: Nddpg ← Nddpg +Ninc

24: end for

less visits of trajectory optimization as the training progresses, we increased the number
of rollouts by Ninc = 15 for each DDPG iteration. The sizes of the replay buffer R1, R2

were 2000 and 1E6, respectively. The soft update rate γ = 0.001 in (10.5). The batch
size for trajectory optimization Nto and DDPG Ndd were both 64. The algorithm used a
cost function l(s, a) = 0.0001�a�2 + �FK(s) − ptgt(s)�2, where FK represents the forward
kinematics and ptgt is the target end-effector points.

Simulation Results

The simulation results on U-shape joint assembly and Lego brick insertion are shown by
Fig. 10.4. Both simulations were trained with assembly clearance as 0.1 mm. Guided-DDPG
takes poses and force/torque measurements of the end-effector as the states, and generates
joint torques as action to drive the robot. The U-shape joint has more complicated surface
than the Lego brick, and a successful assembly requires matching the shapes twice, as shown
in Fig. 10.4 (Top). Despite the difficulties, the proposed algorithm was able to train the

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 151

Figure 10.3: Two simulation tasks for algorithm evaluation.

Figure 10.4: Simulation animations on (Top) U-shape joint assembly and (Bottom) Lego
brick insertion.

policy within 1000 rollouts. We also visualized the adaptability of the trained policy on the
Lego brick insertion task, as shown in Fig. 10.4 (Bottom). The policy was trained with a
brick of size 2×2 and clearance 0.1 mm and tested with a brick of size 4×2 and clearance
1 μm. Moreover, the brick position had an unknown offset (1.4 mm) to the network. The
proposed network was able to address these uncertainties and successfully inserted the brick
to a tighter hole with uncertain position.

Comparison of Different Supervision Methods

The proposed learning framework guides both the critic and actor. To illustrate the neces-
sity of the proposed guidance, we compared the results of guided-DDPG with several other
supervision methods, including the guided-DDPG with partial guidance, pure-DDPG with
supervision data to replay buffer (no supervision on objective function) and the pure-DDPG.
The result was shown in Fig. 10.5. The proposed guided-DDPG achieved the best perfor-

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 152

Figure 10.5: Comparison of different supervision methods with Lego brick insertion.

mance. The partial guidance without critic (Fig. 10.5 Green) was able to guide the actor and
realized safe exploration at the beginning. However, the actor network behaved worse as the
involvement of the semi-supervisor reduced and the weight of the critic increased, since the
critic is trained purely by the contaminated target actor (10.2). In contrast, the partial guid-
ance without actor (Fig. 10.5 Orange) had poorly behaved actor since the actor was trained
purely by the policy gradient using the contaminated critic (10.3). The pure-DDPG with
supervision data (Fig. 10.5 Purple) achieved better performance than pure-DDPG, since the
trajectories obtained from semi-supervisor were better behaved than the initial rollouts of
DDPG. This kind of supervision is similar with the human demonstration in [100].

Effects of the Supervision Weight wto

The supervision weight wto balances the model-based supervision and model-free policy
gradient in actor/critic updates, as shown in (10.14) and (10.13). The results of different
weights on Lego brick insertion are shown in Fig. 10.6. With c = 1, the supervision weight
is wto = 1

1+Nroll
. The weights starts with 1 and decays to 0.001 as Nroll = 1000, while

c = 100 makes wto decay to 0.1 as Nroll = 1000. Slower decay provides excessive guidance
by the semi-supervisor and contaminates the original policy gradient and makes the DDPG
unstable. Empirically, c = 1 ∼ 10 achieves comparable results.

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 153

Figure 10.6: Illustration of the supervision weights on Lego brick insertion.

Comparison of Different Algorithms

The proposed learning framework was compared with other state-of-the-art algorithms, in-
cluding the pure-DDPG, twin delayed deep deterministic policy gradients (TD3) [32] and the
soft actor-critic (SAC) [36]. Default parameters were used for TD3, as shown in [77]. As for
SAC, we used the default parameters in [77] with tuned reward scale as 10. The comparison
result on Lego brick insertion task is shown in Fig. 10.7(a). The proposed guided-DDPG
passed the success threshold (shaded purple line) at the 800 rollouts and consistently suc-
ceeded the task after 2000 rollouts. In comparison, the pure DDPG passed the success
threshold at the 5000 rollouts and collapsed around 10000 rollouts. The performance of pure
DDPG was inconsistent in seven different trials. TD3 and SAC had the similar efficiency
with pure DDPG. The comparison of the algorithms on U-shape joint assembly is shown in
Fig. 10.7(b). Similar with Lego brick insertion, the guided-DDPG achieved more stable and
efficient learning. The time efficiency and data-efficiency of the DDPG and guided-DDPG
are compared in Table 10.1.

Adaptability of the Learned Policy

The adaptability of the learned policy is discussed in this section. Three different types of
uncertainties were considered. The first type was the unknown hole position. The learned

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 154

(a) (b)

Figure 10.7: Comparison of different algorithms for (a) Lego insertion and (b) joint assembly.

Table 10.1: Comparison of DDPG and guided-DDPG

items DDPG Guided-DDPG
time (min) 83 37.3

data (rollouts) 7000 1500

(a) (b)

Figure 10.8: (a) Experimental setup, and (b) experimental results for Lego brick insertion.

policy was able to successfully insert the brick when moving the hole to an uncalibrated
position (maximum offset is 5 mm, hole has width of 16 mm). The second type of uncer-
tainty was the shapes of peg/hole. We found that the learned policy is robust to different
shapes shown in Fig. 10.9. Figure 10.9(a) shows the 2×2 brick used in training, Fig. 10.9(b)
shows the 4×2 brick scenario, Fig. 10.9(c) shows the 4×2 brick with incomplete hole, and
Fig. 10.9(d) shows a cylinder brick. The third type was the different clearance. The policy
was trained with clearance 0.1 mm and tested successfully on insertion tasks with clearance
10 μm, 1 μ and 0. The simulation videos are available at [102].

CHAPTER 10. LEARNING INDUSTRIAL ASSEMBLY BY GUIDED-DDPG 155

Figure 10.9: Adaptability validation of the proposed guided-DDPG.

Experimental Results

Experimental results are presented in this section. The Lego brick was attached to a 3D
printed stick at the end-effector of the Universal robot (UR5). A Robotiq FT 300 force torque
sensor was used to collect the force/torque signal at the wrist. The experimental setup is
shown in Fig. 10.8(a). The policy took the estimated hole position and the force/torque
reading as inputs, and generated transitional velocities for the end-effector. The velocity
was tracked by a low-level tracking controller. The clearance of the Lego brick is less than
0.2 mm. The target position of the hole had 0.5 mm uncertainty, yet the policy was able to
successfully locate the hole and insert the brick, as shown in Fig. 10.8(b). It took 2 hours for
pure-DDPG to find a policy in the exploration space bounded within 1 mm around the hole,
and took 1.5 hours for guided-DDPG to find a policy in a larger exploration space bounded
within 3 mm around the hole. The experimental videos are shown in [102].

10.5 Chapter Summary

This chapter proposed a learning framework for automatic assembly task. The framework
contains a trajectory optimization and an actor-critic structure. The trajectory optimization
was served as a semi-supervisor to provide initial guidance to actor-critic, and the critic
network established the ground-truth quality of the policy by learning from both the semi-
supervisor and exploring with policy gradient. The actor network learned from both the
supervision of the semi-supervisor and the policy gradient of the critic. The involvement
of critic network successfully addressed the stability issue of the trajectory optimization
caused by the high-stiffness and the force/torque feedback. The proposed learning framework
constrained the exploration in a safe narrow space, improved the consistency and reliability
of the model-based RL, and reduced the data requirements to train a policy. Simulation and
experimental results verified the effectiveness of the proposed learning framework.

In the future, the authors would evaluate the algorithm on more realistic industrial
applications such as connector insertion, furniture assembly and tight peg-in-hole tasks.

156

Chapter 11

Conclusions and Future Works

11.1 Conclusions

This dissertation developed algorithms to improve the dexterity of industrial manipulators.
Three major levels of dexterity, including kinematic dexterity, dynamic dexterity and skill
dexterity, were discussed and explored.

Overview

To achieve the kinematic dexterity and reduce the redesigning and reprogramming efforts
to operate workpieces, a unified grasping framework with both customized end-effectors and
general hands was developed and verified. First, a surface fitting algorithm was proposed for
grasp planning with customized industrial grippers to extend the kinematic dexterity and
minimize hardware modification (Chapter 2). The planning algorithm was incorporated with
a learning-based explorer in Chapter 3 to improve the efficiency and keep the interpretability
and reliability of the planning algorithm. Grasp planning algorithms for multi-fingered hands
were further developed to extend the kinematic dexterity on more general grasping tasks.
A finger splitting algorithm was developed in Chapter 4 to transfer grasps from parallel
grippers to multi-fingered hands. A stronger optimization model was proposed in Chapter 5
to plan grasps with multi-fingered hands directly without the initialization of parallel grasps.
A general grasping framework was finalized in Chapter 6 by incorporating the optimization
model with a multi-dimensional surface fitting, to produce versatile grasps robustly under
various uncertainties.

To form a stable grasp and operate workpieces without placing and re-grasping, the
kinematic dexterity was incorporated with dynamic dexterity. First, a comprehensive in-
hand manipulation architecture was proposed and validated in Chapter 7. Chapter 8 further
proposed a robust manipulation controller to enhance the robustness to various uncertainties
and undesired hand properties. A finger gaits planner was introduced in Chapter 9 to realize
long-range object motion and reduce the cycle time of re-grasping.

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 157

Besides kinematic and dynamic dexterity, industrial manipulators are desired to develop
skill dexterity to assemble workpieces into personalized products with minimal system re-
configuration. An intelligent assembly algorithm called guided-deep deterministic policy
gradient was designed in Chapter 10 to learn assembly skills from uncertain environments.
The summaries of different chapters are as follows.

Chapter Summary

Chapter 2 proposed an iterative surface fitting (ISF) algorithm to plan grasps for customized
grippers. ISF searches for optimal grasps by iteratively solving for optimal palm pose and
finger displacement with closed-form solutions. Guided sampling was introduced to initialize
ISF searching and avoid local optima. The proposed grasp planning algorithm was applied
to a series of simulations and experiments. ISF achieved 64.4 ms average searching time
to find a collision-free grasp on the objects in simulations. A grasp planning experiment
was further implemented in clutter environments to grasp objects from unsegmented point
clouds.

Chapter 3 proposed a learning framework to plan robust grasps for customized grippers.
The learning framework includes a low-level ISF planner from Chapter 2 and a high-level
learning-based explorer. The learning-based explorer was introduced with a region-based
convolutional neural network (R-CNN) to search for desired low-regret regions to initialize
ISF search. A series of experiments on robotic bin picking were performed to evaluate
the proposed method. Experiments indicated that the proposed learning framework with
RCNN-ISF achieved a more efficient planning on heavy clutter environments, by significantly
decreasing the average searching time from 17.23 secs to 1.52 secs.

Chapter 4 proposed a finger splitting strategy for grasp planning with multi-fingered
hands by transferring the grasps of parallel grippers. The splitting was initialized by the
planning result of the parallel gripper, and was optimized continuously by a novel iterative
contact point optimization - palm pose optimization (CPO-PPO) algorithm. The CPO and
PPO were both solved analytically. The iterative CPO-PPO algorithm was able to find a
locally optimal collision-free grasp within one second on average for the objects studied in
simulations.

Chapter 5 proposed an efficient optimization model for precision grasp planning. To
optimize the quality and avoid collision, the planning problem was formulated into an op-
timization with penalties and solved by iterating between palm pose optimization and joint
position optimization (PPO-JPO). Iterative PPO-JPO was able to locate a collision-free
grasp within 0.50 sec based on 120 grasps on 12 objects in different categories. Experiments
with a BarrettHand BH8-282 further demonstrated the effectiveness of the algorithm.

Chapter 6 proposed an efficient framework for grasp generation and execution by com-
bining the surface fitting from Chapter 2 and optimization model from Chapter 5. The
framework includes a multi-dimensional iterative surface fitting (MDISF) and a grasp tra-
jectory optimization (GTO). The MDISF algorithm searches for optimal grasps by mini-
mizing the hand-object fitting error and penalizing the collision, and the GTO algorithm

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 158

plans finger trajectories for grasp execution with the point cloud representation of the ob-
ject. The MDISF-GTO exhibits certain robustness to the incomplete/noisy point cloud and
various underlying uncertainties. On average, it took 0.40 sec for MDISF to find a collision-
free grasp, and took 0.61 sec for GTO to optimize the trajectory to reach the grasp. The
effectiveness of the framework was verified by simulations and experiments.

Chapter 7 presented an architecture for robust grasping and dexterous manipulation.
The architecture contains a high-level modified impedance controller (MIC) to generate
Cartesian force on object from the pose feedback, a mid-level manipulation controller to
produce contact forces on fingertips from the desired Cartesian force, and a low-level force
tracking controller to execute the generated force command. The high-level MIC is robust
to underlying uncertainties and external disturbances, the mid-level manipulation controller
avoids slippages and reduces the control effort, and the low-level force controller bypasses the
unmodeled finger dynamics such as friction, joint flexibility and backlash. Both simulations
and experiments with two different hands verified the proposed architecture. Preliminary
qualitative results of the robust grasping with Type A hand and dexterous manipulation with
Type B hand demonstrated the effectiveness of the proposed manipulation architecture.

Chapter 8 proposed a robust manipulation controller (RMC) within the manipulation
architecture from Chapter 7. RMC includes a robust controller and a manipulation controller
to achieve dexterous manipulation under various uncertainties and external disturbances.
Feedback linearization was applied to reduce the nonlinearities of the composite hand-object
system. By utilizing the structures of the uncertainties, the proposed robust controller can
achieve faster convergence and tolerate more uncertainties compared with other methods
based on disturbance observer and MIC from Chapter 7. The dual-stage formulation skipped
complicated contact modeling, and was able to regulate contact force and prevent slippage.
Simulation verified that the proposed RMC is robust to various uncertainties. Moreover,
it did not require joint/object velocity measurement and was able to achieve fast tracking
performance. Experiments performed on a BarrettHand BH8-282 verified the effectiveness
of RMC.

Chapter 9 incorporated a novel velocity-based finger gaits planner with the robust manip-
ulation controller from Chapter 8, to achieve real-time finger gaiting under different types of
uncertainties. The finger gaits planner searches optimal velocities to improve the object grasp
quality and the hand manipulability, rather than directly finding optimal contact points by
nonlinear programming methods. The proposed planner is computationally efficient and can
be solved in real-time. Besides, the planner does not rely on 3D reconstruction for surface
modeling and high resolution encoders for velocity measurements. The presented planner
is robust to the friction overestimation and unexpected slippage, and is able to address the
complex dynamically critical tasks such as box-flipping with low-DOF hands. Simulations
showed that the proposed method can achieve real-time finger gaiting, and realize long-range
object motion that is infeasible without the proposed finger gaits planner.

Chapter 10 proposed a learning framework called guided-deep deterministic policy gradi-
ent (guided-DDPG) for high precision assembly task. The framework contains a trajectory
optimization and an actor-critic structure. The trajectory optimization was served as a

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 159

semi-supervisor to provide initial guidance to actor-critic, and the critic network established
the ground-truth quality of the policy by learning from both the semi-supervisor and ex-
ploring with policy gradient. The actor network learned from both the supervision of the
semi-supervisor and the policy gradient of the critic. The involvement of critic network
successfully addressed the stability issue of the trajectory optimization caused by the high-
stiffness and the force/torque feedback. The proposed learning framework constrained the
exploration in a safe narrow space, improved the consistency and reliability of the model-
based RL, and reduced the data requirements to train a policy. Simulation and experimental
results verified the effectiveness of the proposed learning framework.

11.2 Discussion and Future Works

Several open questions are revealed during the dexterity study of industrial manipulators.
This section discussed these questions and directions of future works.

Grasping

Current implementations from Chapter 2 to Chapter 6 avoided manual heuristics by optimiz-
ing more abstract quality indices for desired grasps. While optimization-based approaches
are more general than manual heuristics [99, 88] and more interpretable and predictable than
deep learning [49], they rely on heavy online computation. To increase the optimization ef-
ficiency, the accuracy of quality indices was sacrificed by twisting rigorous wrench-based
qualities to geometrical ones. For example, the Ferrari-Canny metric [30] in Chapter 5 was
replaced by a geometric measure that combined 1) the distance between contact polygon
and object center and 2) normal alignment errors between fingertips and the object. With
the geometric quality measures, gradient-based approaches were applied to achieve timely
search without exhaustive sampling.

Deep learning based methods learn a mapping function from the images to qualities [62,
49, 63]. The quality networks were trained by either mathematically rigorous grasps [62, 49]
or empirical trials [63] to reflect reality. With domain randomization [95, 63], the learning
methods are robust to sensing noise, positioning errors and background variations. Moreover,
the learning based methods are able to handle the situation where the actual grasp positions
are missing or not visible in the depth or RGB images. Therefore, they are suitable for
grasping in clutter environments.

A common drawback of the learning-based approaches is the learning dimension. Due to
the limit of data, the learned grasps are usually constrained in a top-down manner with par-
allel grippers. Some recent researches have broken the limitation of learning dimension [105]
and learned 6D versatile grasps with multi-fingered hands, yet the performance on a broad
scale physical experiment is unknown. Another common shortcoming is the absence of col-
lision avoidance and motion planning modules, making the end-to-end system fragile when

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 160

picking heavy metal workpieces. In comparison, our grasp trajectory generation in Chapter 6
is able to generate collision-free optimal trajectories reliably.

A promising direction of future research is to incorporate learning with the proposed
grasping framework. The goal is to enable the robot to 1) learn grasps from partially ob-
servable environments with single depth image, and 2) learn push-through grasps in clutter
environments, since avoiding each obstacle in heavy clutter environments makes the grasp
excessively conservative. The grasp planning at algorithmic level with BarrettHand provides
valuable feedback for hardware design. Therefore, another research direction is to design an
adaptive, safe and affordable multi-fingered hands for industrial bin picking.

Manipulation

Ideally 3D force/tactile sensors or joint torque sensors would not be required if the finger
model was perfectly known. The force/torque command could be simply sent to motor in an
open-loop manner. However, due to the unmeasurable dynamics (inertial and Coriolis force),
unmodeled dynamics (friction, backlash and joint flexibility), action noise and time delay,
the open-loop method is usually not enough to track the desired force. One method is to
model the finger exhaustively by identifying the parameters of unmodeled dynamics and then
apply feed-forward control. This method, however, has several drawbacks. First, it requires a
rough model of the unmodeled dynamics. For example, the friction may need to be modeled
into LuGre model with 6 parameters [71, 10]. Second, the identification usually requires
high resolution encoders and accelerometers to capture the high-order motion [10, 107].
Moreover, the calibrated model may be affected by trajectories, payloads and pretension of
the drivetrains, as shown in Chapter 7.

Another method is to use force sensors (Type B hand), tactile sensors (Type A hand) or
combination of PPS sensor and strain gauge (BarrettHand) and perform a feedback control.
However, the force/tactile sensors are costly and easy to abrade, and the sensor modeling
error is destructive to the stability of closed-loop system.

Deep learning based methods [3] provide an alternative solution for dexterous manipula-
tion with minimum number of sensors. The robustness of the policy is achieved by training
with domain randomization [95]. However, the current implementation of deep learning
methods usually exhibit several drawbacks. First, the training with domain randomization
is exhaustive and brute-forcing, which means the training scenarios will be exponentially
increased when randomizing any dimensions with uncertainties. Secondly, the network de-
signing and hyperparameter tuning are time-consuming and require expertise. Moreover,
the learned policy is not interpretable and lacks of stability guarantee compared with the
proposed model-based control methods in Chapter 8.

Essentially, the manipulation policy trained with deep learning is embedded into the
hand-object-task system. The embedded nature enables the learned policy to 1) use raw
signals as input and 2) be robust to the sensor calibration/modeling errors. However, the
learned policy is not easily adaptable to different hands, objects or different tasks. The con-
troller designed by the proposed method, however, is parameterized by key parameters of the

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 161

object and independent to the hand and tasks. Therefore, the designed controller is able to
1) handle objects with different sizes and weights, 2) achieve continuous trajectory tracking,
gaiting and pivoting tasks for dangled objects with stability guarantee, and 3) be invariant
to hand and sensor types, as shown in Chapter 7 and Chapter 8. Moreover, the system with
the designed controller guarantees safety by complying with excessive disturbances.

Nevertheless, the learned policy is able to 1) allow multiple contacts for each finger and
2) achieve complex object motions. The designed controller is difficult to model the hybrid
dynamics with multiple contacts in each finger, and the realizable trajectories are constrained
by feasible space of object motion (Chapter 8).

A promising direction of future research is to combine control with learning-based meth-
ods on manipulation. More specifically, a deep network with parameterization and abstrac-
tion of the environment will be designed to enable the deep learning to play side-by-side
instead of being embedded to the hardware and task. A model-based domain randomization
may also be investigated to avoid exhaustive sampling in uncertain dimensions.

Assembly

The performance of the automatic assembly has been improved dramatically by deep learn-
ing [48, 39, 64, 28]. On one hand, supervised learning is reliable when the training data
is sufficient. Practically, collecting data under various uncertainties is inefficient. On the
other hand, reinforcement learning (RL) learns a sequence of optimal actions by exploring
the environment to maximize the expected reward [28]. With the abstract reward, RL also
suffers from data shortage and the low efficiency issue. Meanwhile, both types of learning
methods and the policies are embedded into the trained environment, causing overfitting
and challenges to adapt to different environments. Model-based reinforcement learning [47,
48] has been proposed to address the data shortage by fitting models from data. The model
fitting would be erroneous and the performance would be compromised if the contact sur-
face is stiff or jerky, as shown in Chapter 10. Moreover, defining a physically safe training
environment is very challenging for different tasks at the end-user side. Domain random-
ization [95] improves robustness by randomizing uncertain states and training exhaustively
in simulation. The force responses in the physical world, however, are extremely difficult to
be captured accurately, especially for those tasks with stiff and jerky contacts. The contact
dynamics become more different when constraining the workspace in precise assembly.

A recent successful peg-hole-insertion experiment with a simple Proportional controller1

reveals the strength of compliance control. It can be seen that the human or soft robotic
systems usually have better performance because of the system compliance. Therefore, a
group of assembly learning with compliance control and impedance control [93, 74] have
been successfully applied. The compliance is provided by the controller to the closed-loop
system in order to compensate the jerky and high stiffness of the contact surfaces.

1Experiment with FANUC LRMate 200iD/7L manipulators and H7/h7 Aluminum peg and hole. P
controller is tuned trivially. Experiment credit: Shiyu Jin in Mechanical Systems Control lab.

CHAPTER 11. CONCLUSIONS AND FUTURE WORKS 162

Chapter 10 combined the model-based reinforcement learning with off-policy actor-critic
to address the high stiffness and improve the efficiency and robustness. The method, however,
still requires excessive time to train. A promising direction of future research is to integrate
the impedance/compliance control into the guided-DDPG to compensate the effect of the
discontinuous dynamical model. Another direction is to evaluate the algorithm on more
realistic industrial applications such as connector insertion, furniture assembly and tight
peg-in-hole tasks.

163

Appendix A

Robust Manipulation Control

A.1 Uncertainties Modeling

Type I/II uncertainties influence the effective object dynamics (8.3) in a complicated manner.
This appendix first describes these uncertainties mathematically, then provides an approach
to model all the uncertainties.

Mathematical Description of Uncertainties

To evaluate their impacts, we first present the relation between the motion in body frame
and the motion in local coordinate.

vo = RT
o ṗ

ωo = QEĖ
(A.1)

where vo,ωo are translational and angular velocities of the object in body frame, and ṗ, Ė
are same velocities represented in a local frame, where the translation is in inertial frame,
while the rotation is a special frame constructed by ZYX Euler angle E. Ro is the rotation
matrix of the object in inertial frame, and QE is the associated transform matrix with the
form:

QE(Ro) =

⎡
⎣

− sin(θ) 0 1
cos(θ) sin(φ) cos(φ) 0
cos(θ) cos(φ) − sin(φ) 0

⎤
⎦

where φ, θ are elements of ZYX Euler angle E = [ψ, θ,φ]. The derivation of QE are based
on the fact that Ro is a function of E and ω̂o = RT

o Ṙo.

Object Dynamics Uncertainty

Without considering other uncertainties, the mo, Io uncertainties appear in inertia matrix:

Mo =

�
moI3 O3

O3 QT
EIoQE

�
No =

�
mog
03

�
(A.2)

APPENDIX A. ROBUST MANIPULATION CONTROL 164

where I3,O3 ∈ R3×3 are identity and zero matrix, and g, 03 ∈ R3 are gravitational accelera-
tion vector and zero vector. The Coriolis force is neglected. The QT

EIoQE in (A.2) is derived
based on τTo ωo = τTE Ė and (A.1). Therefore,

τE = QT
Eτo = QT

EIoω̇o = QT
EIoQEĖ

τE, τo are the moment of object in local frame and object frame.

COM Uncertainty

In COM uncertainty, our belief to object COM and principal axes are erroneous. Suppose
the nominal body center is Ō and actual body center is O (Ō �= O), then based on [89]:

Mō =

�
moI3 moRōp̂

T
ōoQ̄E

moQ̄
T
E p̂ōoR

T
ō Q̄T

ER
T
oōIoRoōQ̄E

�
Nō =

�
mog
03

�
(A.3)

where Rō is the object rotation in the frame specified by Ō and the nominal principal axes.
Q̄E is the associated transfer matrix. po,ō, Ro,ō are relative position and rotation of nominal
object frame w.r.t. actual object frame.

Meanwhile, the grasp map w.r.t. nominal frame Gō becomes:

Gō =

�
Rc1 ... Rcnc

Q̄T
ER

T
ō p̂c1Rc1 ... Q̄T

ER
T
ō p̂cnc

Rcnc

�
(A.4)

where pci , Rci are position and orientation of the contact frame measured by tactile sensor.
The point contact with friction (PCWF) model [69] is used to evaluate (A.4).

With the coupling of Rō and pō in Mō and Gō, separating the effective object inertia
matrix into the form in (8.3) is extremely difficult.

Tactile Uncertainty

In tactile uncertainty, the measurement of contact position and orientation pci , Rci are un-
certain. The uncertainty appears in grasp map evaluation (A.4). Besides, by assuming each
finger has at most one contact point, we can evaluate the hand Jacobian by:

Jh = diag
�
RT

c1
Jv,1(pc1), ..., R

T
cnc

Jv,nc(pcnc
)
�

(A.5)

where Jv,i(pci) is the translational part of the finger Jacobian, and it maps the joint speed
of the i-th finger to inertial velocity of pci .

The formulations of (A.4) and (A.5) introduce challenges to both robust controller design
in Section 8.4 of Chapter 8 and manipulation controller in Section 7.2 of Chapter 7.

APPENDIX A. ROBUST MANIPULATION CONTROL 165

An Approach to Model Uncertainties

Compared with object dynamics uncertainty, the COM uncertainty and tactile uncertainty
are difficult to model explicitly. Firstly, these two uncertainties influence both the effective
object dynamics and the kinematics (i.e. grasp map and hand jacobian). Secondly, the
position and orientation variations are coupled together for later two uncertainties. Moreover,
the variations of R• ∈ SO(3) in later two uncertainties generate a multiplicative uncertainty
on R• = R̄•R̃•, and separating effective object inertia, grasp map and hand Jacobian in this
case becomes extremely challenging. The approximation R• = R̄• + ΔR• only works for
small variations, which still results in excessively high order controller1. The influence of the
contact dynamics uncertainty shall be directly treated as disturbance, since the parameters
of the effective object dynamics are not directly effected by the variations on contact stiffness,
damping and friction coefficients.

Based on the analysis above, we choose to model the object dynamics uncertainties
explicitly, and treat the influences of other uncertainties as disturbances. Therefore, the
object inertia matrix (A.3), grasp map (A.4) and hand Jacobian (A.5) become:

Mō =

�
moI3 O3

O3 Q̄T
EIōQ̄E

�
Nō =

�
mog
03

�

Gō =

�
R̄c1 ... R̄cnc

Q̄T
ER

T
ō
ˆ̄pc1R̄c1 ... Q̄T

ER
T
ō
ˆ̄pcnc

R̄cnc

�

Jh = diag
�
R̄T

c1
Jv,1(p̄c1), ..., R̄

T
cnc

Jv,nc(p̄cnc
)
�

(A.6)

where R̄ci is the average of the last ten Rci collected in 1000 Hz (sampling rate of the tactile
sensor).

Starting from (8.5), the object inertia matrix M̄o, grasp map G and hand Jacobian Jh
are replaced by Mō, Gō and Jh in (A.6).

A.2 Equivalence of Different Disturbance Placements

The objective of this appendix is to prove the equivalence of placing the lumped distur-
bance udis before nonlinear dynamics, as shown in Fig. 8.2, and placing udis before feedback
linearization, as shown in Fig. 8.3. The udis includes external perturbation and other distur-
bances converted from uncertainties.

udis as Input of Nonlinear Dynamics

When treating the udis as the input of the dynamics equation, the state space model of
nonlinear system can be represented as:

ẋ = M̄−1
augBFF − M̄−1

augC̄augx− M̄−1
augN̄aug + BFudis + Lw (A.7)

1Based on the trials of authors, approximation methods only works when the variations r < 0.1 rad in
ΔR• = er̂, and the controller order can reach 264.

APPENDIX A. ROBUST MANIPULATION CONTROL 166

Plugging (8.13) into (A.7), we have:

ẋ =

�
O I
O O

�
x+ BF (u+ udis) + Lw (A.8)

udis as Input of Feedback Linearization

When treating the udis as the input of feedback linearization, the state space model of
nonlinear system can be represented as:

ẋ = M̄−1
augBFF − M̄−1

augC̄augx− M̄−1
augN̄aug + Lw (A.9)

The feedback linearization is:

F =
�
M̄−1

augBF

�† �
M̄−1

augC̄augx+ M̄−1
augN̄aug + BF (u+ udis)

�
(A.10)

By plugging (A.10) into (A.9), we have the exact same formulation as (A.8).

167

Bibliography

[1] Jacopo Aleotti and Stefano Caselli. “Part-based robot grasp planning from human
demonstration”. In: Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on. IEEE. 2011, pp. 4554–4560.

[2] Sheldon Andrews and Paul G Kry. “Goal directed multi-finger manipulation: Control
policies and analysis”. In: Computers & Graphics 37.7 (2013), pp. 830–839.

[3] Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In: arXiv
preprint arXiv:1808.00177 (2018).

[4] Gary J Balas et al. “μ-analysis and synthesis toolbox”. In: MUSYN Inc. and The
MathWorks, Natick MA (1993).

[5] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”. In: Sensor
Fusion IV: Control Paradigms and Data Structures. Vol. 1611. International Society
for Optics and Photonics. 1992, pp. 586–607.

[6] Antonio Bicchi. “Hands for dexterous manipulation and robust grasping: A difficult
road toward simplicity”. In: IEEE Transactions on robotics and automation 16.6
(2000), pp. 652–662.

[7] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta nu-
merica 4 (1995), pp. 1–51.

[8] Torgny Brog̊ardh. “Present and future robot control development-An industrial per-
spective”. In: Annual Reviews in Control 31.1 (2007), pp. 69–79.

[9] A Caldas et al. “Object-level impedance control for dexterous manipulation with
contact uncertainties using an LMI-based approach”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 3668–3674.

[10] Wenjie Chen. “Intelligent Control of Robots with Mismatched Dynamics and Mis-
matched Sensing”. PhD thesis. UC Berkeley, 2012.

[11] Yang Chen and Gérard Medioni. “Object modelling by registration of multiple range
images”. In: Image and vision computing 10.3 (1992), pp. 145–155.

BIBLIOGRAPHY 168

[12] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. “Dexterous grasping via eigen-
grasps: A low-dimensional approach to a high-complexity problem”. In: Robotics: Sci-
ence and Systems Manipulation Workshop-Sensing and Adapting to the Real World.
Citeseer. 2007.

[13] Mark R Cutkosky. “On grasp choice, grasp models, and the design of hands for
manufacturing tasks”. In: IEEE Transactions on robotics and automation 5.3 (1989),
pp. 269–279.

[14] Mark Cutkosky and Paul Wright. “Modeling manufacturing grips and correlations
with the design of robotic hands”. In: Robotics and Automation. Proceedings. 1986
IEEE International Conference on. Vol. 3. IEEE. 1986, pp. 1533–1539.

[15] Mathieu Desbrun et al. “Implicit fairing of irregular meshes using diffusion and cur-
vature flow”. In: Proceedings of the 26th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co. 1999, pp. 317–324.

[16] Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial
databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[17] Yongxiang Fan and Masayoshi Tomizuka. “Efficient Grasp Planning and Execution
with Multi-Fingered Hands by Surface Fitting”. In: arXiv preprint arXiv:1902.10841
(2019).

[18] Yongxiang Fan, Xinghao Zhu, and Masayoshi Tomizuka. “Optimization Model for
Planning Precision Grasps with Multi-Fingered Hands”. In: arXiv preprint arXiv:1904.07332
(2019).

[19] Yongxiang Fan et al. “A Learning Framework for Robust Bin Picking by Customized
Grippers”. In: arXiv preprint arXiv:1809.08546 (2018).

[20] Yongxiang Fan et al. “Grasp planning for customized grippers by iterative surface
fitting”. In: 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE). IEEE. 2018, pp. 28–34.

[21] Yongxiang Fan et al. “Object position and orientation tracking for manipulators con-
sidering nonnegligible sensor physics”. In: Flexible Automation (ISFA), International
Symposium on. IEEE. 2016, pp. 450–457.

[22] Yongxiang Fan et al. “Real-time finger gaits planning for dexterous manipulation”.
In: The 20th World Congress of the International Federation of Automatic Control
(IFAC) (2017, to be presented).

[23] Yongxiang Fan et al. “Real-time finger gaits planning for dexterous manipulation”.
In: IFAC-PapersOnLine 50.1 (2017), pp. 12765–12772.

[24] Yongxiang Fan et al. “Real-time grasp planning for multi-fingered hands by finger
splitting”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 4045–4052.

BIBLIOGRAPHY 169

[25] Yongxiang Fan et al. Real-Time Robust Finger Gaits Planning under Object Shape
and Dynamics Uncertainties. Youtube. 2017. url: https://youtu.be/fvsFtnAyODs.

[26] Yongxiang Fan et al. “Real-time robust finger gaits planning under object shape and
dynamics uncertainties”. In: Intelligent Robots and Systems (IROS) 2017 IEEE/RSJ
International Conference on. IEEE. 2017, pp. 1267–1273.

[27] Yongxiang Fan et al. “Robust dexterous manipulation under object dynamics un-
certainties”. In: Advanced Intelligent Mechatronics (AIM), 2017 IEEE International
Conference on (2017 to appear).

[28] Yonxiang Fan, Jieliang Luo, and Masayoshi Tomizuka. “A Learning Framework for
High Precision Industrial Assembly”. In: arXiv preprint arXiv:1809.08548 (2018).

[29] Raul Fernandez et al. “Micro-vibration-based slip detection in tactile force sensors”.
In: Sensors 14.1 (2014), pp. 709–730.

[30] Carlo Ferrari and John Canny. “Planning optimal grasps”. In: Robotics and Au-
tomation, 1992. Proceedings., 1992 IEEE International Conference on. IEEE. 1992,
pp. 2290–2295.

[31] Jeremy Fishel, Gary Lin, and Gerald Loeb. “Biotac R� product manual”. In: SynTouch
LLC, February (2013).

[32] Scott Fujimoto, Herke van Hoof, and Dave Meger. “Addressing Function Approxima-
tion Error in Actor-Critic Methods”. In: arXiv preprint arXiv:1802.09477 (2018).

[33] Noriatsu Furukawa et al. “Dynamic regrasping using a high-speed multifingered hand
and a high-speed vision system”. In: Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006. IEEE. 2006, pp. 181–187.

[34] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2014, pp. 580–587.

[35] Corey Goldfeder et al. “The columbia grasp database”. In: Robotics and Automation,
2009. ICRA’09. IEEE International Conference on. IEEE. 2009, pp. 1710–1716.

[36] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor”. In: arXiv preprint arXiv:1801.01290 (2018).

[37] Kaiyu Hang, Johannes A Stork, and Danica Kragic. “Hierarchical fingertip space for
multi-fingered precision grasping”. In: Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on. IEEE. 2014, pp. 1641–1648.

[38] Kaiyu Hang et al. “Hierarchical fingertip space: A unified framework for grasp plan-
ning and in-hand grasp adaptation”. In: IEEE Transactions on robotics 32.4 (2016),
pp. 960–972.

[39] Tadanobu Inoue et al. “Deep reinforcement learning for high precision assembly
tasks”. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE. 2017, pp. 819–825.

BIBLIOGRAPHY 170

[40] Timothée Jost and Heinz Hugli. “A multi-resolution ICP with heuristic closest point
search for fast and robust 3D registration of range images”. In: 3-D Digital Imaging
and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on.
IEEE. 2003, pp. 427–433.

[41] James W Kalat. Introduction to psychology. Nelson Education, 2016.

[42] Byoung-Ho Kim et al. “Optimal grasping based on non-dimensionalized performance
indices”. In: Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ In-
ternational Conference on. Vol. 2. IEEE. 2001, pp. 949–956.

[43] Ellen Klingbeil et al. “Grasping with application to an autonomous checkout robot”.
In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE.
2011, pp. 2837–2844.

[44] Hakan Koc et al. “Modeling and robust control of winding systems for elastic webs”.
In: IEEE Transactions on control systems technology 10.2 (2002), pp. 197–208.

[45] Suresh Kotha. “Mass customization: implementing the emerging paradigm for com-
petitive advantage”. In: Strategic Management Journal 16.S1 (1995), pp. 21–42.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification
with deep convolutional neural networks”. In: International Conference on Neural
Information Processing Systems. 2012, pp. 1097–1105.

[47] Sergey Levine and Vladlen Koltun. “Guided policy search”. In: International Confer-
ence on Machine Learning. 2013, pp. 1–9.

[48] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Jour-
nal of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[49] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with large-
scale data collection”. In: International Symposium on Experimental Robotics. Springer.
2016, pp. 173–184.

[50] Miao Li et al. “Dexterous grasping under shape uncertainty”. In: Robotics and Au-
tonomous Systems 75 (2016), pp. 352–364.

[51] Miao Li et al. “Learning object-level impedance control for robust grasping and dex-
terous manipulation”. In: 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2014, pp. 6784–6791.

[52] Ying Li, Jiaxin L Fu, and Nancy S Pollard. “Data-driven grasp synthesis using shape
matching and task-based pruning”. In: IEEE Transactions on Visualization and Com-
puter Graphics 13.4 (2007), pp. 732–747.

[53] Zexiang Li and S Shankar Sastry. “Task-oriented optimal grasping by multifingered
robot hands”. In: IEEE Journal on Robotics and Automation 4.1 (1988), pp. 32–44.

[54] Alain Liegeois. “Automatic supervisory control of the configuration and behavior of
multibody mechanisms”. In: IEEE transactions on systems, man, and cybernetics
7.12 (1977), pp. 868–871.

BIBLIOGRAPHY 171

[55] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
arXiv preprint arXiv:1509.02971 (2015).

[56] Hsien-Chung Lin et al. “Real-time collision avoidance algorithm on industrial manip-
ulators”. In: Control Technology and Applications (CCTA), 2017 IEEE Conference
on. IEEE. 2017, pp. 1294–1299.

[57] C Karen Liu. “Dextrous manipulation from a grasping pose”. In: ACM Transactions
on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 59.

[58] Chia-Shang Liu and Huei Peng. “Disturbance observer based tracking control”. In:
Journal of Dynamic Systems, Measurement, and Control 122.2 (2000), pp. 332–335.

[59] Kok-Lim Low. “Linear least-squares optimization for point-to-plane icp surface reg-
istration”. In: Chapel Hill, University of North Carolina 4 (2004).

[60] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming. Vol. 2.
Springer, 1984.

[61] Raymond R Ma and Aaron M Dollar. “On dexterity and dexterous manipulation”.
In: 2011 15th International Conference on Advanced Robotics (ICAR). IEEE. 2011,
pp. 1–7.

[62] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for ro-
bust grasp planning using a multi-armed bandit model with correlated rewards”. In:
Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE.
2016, pp. 1957–1964.

[63] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”. In: arXiv preprint arXiv:1703.09312 (2017).

[64] David Mart́ınez, Guillem Alenya, and Carme Torras. “Relational reinforcement learn-
ing with guided demonstrations”. In: Artificial Intelligence 247 (2017), pp. 295–312.

[65] Andrew T Miller and Peter K Allen. “Graspit! a versatile simulator for robotic grasp-
ing”. In: IEEE Robotics & Automation Magazine 11.4 (2004), pp. 110–122.

[66] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), p. 529.

[67] Abdellah Mokhtari et al. “Feedback linearization and linear observer for a quadrotor
unmanned aerial vehicle”. In: Advanced Robotics 20.1 (2006), pp. 71–91.

[68] Igor Mordatch, Zoran Popović, and Emanuel Todorov. “Contact-invariant optimiza-
tion for hand manipulation”. In: Proceedings of the ACM SIGGRAPH/Eurographics
symposium on computer animation. Eurographics Association. 2012, pp. 137–144.

[69] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction
to robotic manipulation. CRC press, 1994.

[70] Ehtesham Nazma and Suhaib Mohd. “Tendon driven robotic hands: A review”. In:
Int. J. Mech. Eng. Robot. Res. 1 (2012), pp. 1520–1532.

BIBLIOGRAPHY 172

[71] Henrik Olsson et al. “Friction models and friction compensation”. In: Eur. J. Control
4.3 (1998), pp. 176–195.

[72] Jeremie Papon et al. “Voxel Cloud Connectivity Segmentation - Supervoxels for Point
Clouds”. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-
ence on. Portland, Oregon, June 2013.

[73] Andreas ten Pas and Robert Platt. “Using geometry to detect grasp poses in 3d point
clouds”. In: Robotics Research. Springer, 2018, pp. 307–324.

[74] Luka Peternel, Tadej Petrič, and Jan Babič. “Robotic assembly solution by human-in-
the-loop teaching method based on real-time stiffness modulation”. In: Autonomous
Robots 42.1 (2018), pp. 1–17.

[75] Robert J Platt Jr. “Learning and generalizing control-based grasping and manipula-
tion skills”. PhD thesis. Citeseer, 2006.

[76] R Platt, Andrew H Fagg, and Roderic A Grupen. “Manipulation gaits: Sequences of
grasp control tasks”. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on. Vol. 1. IEEE. 2004, pp. 801–806.

[77] Vitchyr Pong. rlKit: reinforcement learning framework and algorithms implemented
in PyTorch. https://github.com/vitchyr/rlkit.git. 2018.

[78] Markus Przybylski, Tamim Asfour, and Rüdiger Dillmann. “Planning grasps for
robotic hands using a novel object representation based on the medial axis trans-
form”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE. 2011, pp. 1781–1788.

[79] Máximo A Roa and Raúl Suárez. “Grasp quality measures: review and performance”.
In: Autonomous robots 38.1 (2015), pp. 65–88.

[80] Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A versatile and scal-
able robot simulation framework”. In: Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. IEEE. 2013, pp. 1321–1326.

[81] JB Rosen. “The gradient projection method for nonlinear programming. Part II. Non-
linear constraints”. In: Journal of the Society for Industrial and Applied Mathematics
9.4 (1961), pp. 514–532. url: http://epubs.siam.org/doi/pdf/10.1137/0109044.

[82] Szymon Rusinkiewicz and Marc Levoy. “Efficient variants of the ICP algorithm”. In:
3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference
on. IEEE. 2001, pp. 145–152.

[83] Jean-Philippe Saut and Daniel Sidobre. “Efficient models for grasp planning with a
multi-fingered hand”. In: Robotics and Autonomous Systems 60.3 (2012), pp. 347–
357.

[84] John Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with Se-
quential Convex Optimization.” In: Robotics: science and systems. Vol. 9. 1. Citeseer.
2013, pp. 1–10.

BIBLIOGRAPHY 173

[85] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[86] Jane Shi and Gurdayal S. Koonjul. “Real-Time Grasping Planning for Robotic Bin-
Picking and Kitting Applications”. In: IEEE Transactions on Automation Science &
Engineering 14.2 (2017), pp. 809–819.

[87] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[88] Peng Song, Zhongqi Fu, and Ligang Liu. “Grasp planning via hand-object geometric
fitting”. In: The Visual Computer 34.2 (2018), pp. 257–270.

[89] Jaros	law Strza	lko et al. “General Motion of a Rigid Body”. In: Dynamics of Gambling:
Origins of Randomness in Mechanical Systems (2009), pp. 23–39.

[90] Zhe Su et al. “Force estimation and slip detection/classification for grip control using
a biomimetic tactile sensor”. In: 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids). IEEE. 2015, pp. 297–303.

[91] Tamara Supuk, Timotej Kodek, and Tadej Bajd. “Estimation of hand preshaping
during human grasping”. In: Medical engineering & physics 27.9 (2005), pp. 790–797.

[92] Taro Takahashi et al. “Adaptive grasping by multi fingered hand with tactile sensor
based on robust force and position control”. In: Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on. IEEE. 2008, pp. 264–271.

[93] Te Tang et al. “Teach industrial robots peg-hole-insertion by human demonstration”.
In: Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference
on. IEEE. 2016, pp. 488–494.

[94] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization”. In: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–
4913.

[95] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2017, pp. 23–30.

[96] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for model-
based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2012, pp. 5026–5033.

[97] Emanuel Todorov and Weiwei Li. “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems”. In: Proceedings
of the 2005, American Control Conference, 2005. IEEE. 2005, pp. 300–306.

[98] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. “Simultaneous grasp
and motion planning: Humanoid robot ARMAR-III”. In: IEEE Robotics & Automa-
tion Magazine 19.2 (2012), pp. 43–57.

BIBLIOGRAPHY 174

[99] Nikolaus Vahrenkamp et al. “Planning high-quality grasps using mean curvature ob-
ject skeletons”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 911–918.

[100] Matej Veceŕık et al. “Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards”. In: CoRR, abs/1707.08817 (2017).

[101] Phongtharin Vinayavekhin, Shunsuke Kudoh, and Katsushi Ikeuchi. “Towards an
automatic robot regrasping movement based on human demonstration using tangle
topology”. In: Robotics and Automation (ICRA), 2011 IEEE International Confer-
ence on. IEEE. 2011, pp. 3332–3339.

[102] Website for Towards Robotic Dexterity: A Study on Grasping, Manipulation and
Assembly. https://www.decf.berkeley.edu/%7Eyongxiangfan/thesis/thesis.html.

[103] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

[104] Thomas Wimböck et al. “Comparison of object-level grasp controllers for dynamic
dexterous manipulation”. In: The International Journal of Robotics Research 31.1
(2012), pp. 3–23.

[105] Bohan Wu, Iretiayo Akinola, and Peter K Allen. “Pixel-Attentive Policy Gradient for
Multi-Fingered Grasping in Cluttered Scenes”. In: arXiv preprint arXiv:1903.03227
(2019).

[106] Jijie Xu, Tak-Kuen John Koo, and Zexiang Li. “Sampling-based finger gaits planning
for multifingered robotic hand”. In: Autonomous Robots 28.4 (2010), pp. 385–402.

[107] YU ZHAO. “Intelligent Control and Planning for Industrial Robots”. PhD thesis. UC
Berkeley, 2018.

[108] Timo Zinßer, Jochen Schmidt, and Heinrich Niemann. “A refined ICP algorithm for
robust 3-D correspondence estimation”. In: Image Processing, 2003. ICIP 2003. Pro-
ceedings. 2003 International Conference on. Vol. 2. IEEE. 2003, pp. II–695.

